Структура земной коры. Тектонические движения и тектонические структуры земной коры

Свидетельствуют о том, что на нашей планете уже много сотен миллионов лет назад сформировались как жесткие и малоподвижные глыбы - платформы и щиты, так и подвижные горные пояса, которые часто называют геосинклинальными. К ним относятся и огромные , обрамляющие моря и целые . В XX в. эти научные представления были дополнены новыми данными, среди которых в первую очередь следует назвать открытие срединно-океанических хребтов, и океанических котловин.

Наиболее устойчивыми участками земной коры являются платформы. Площадь их составляет многие тысячи и даже миллионы квадратных километров. Когда-то они были подвижными, но со временем превратились в жесткие массивы. Платформы, как правило, состоят из двух этажей. Нижний этаж построен из древних кристаллических пород, верхний - из более молодых. Породы нижнего этажа называют фундаментом платформы. Выступы такого фундамента можно наблюдать в , на , в и . Благодаря своей массивности и жесткости эти выступы получили название - шиты. Это самые древние участки : возраст многих достигает 3 - 4 млрд. лет. За это время в породах произошли необратимые изменения , перекристаллизация, уплотнения и другие метаморфозы.

Верхний этаж платформ образуют огромные толщи осадочных пород, накопившихся в течение сотен миллионов лет. В этих толщах наблюдаются пологие складки, разрывы, валы и купола. Следами особенно крупных поднятий и опусканий являются антеклизы и синеклизы. по своей форме напоминает гигантский холм площадью 60 - 100 тыс. км2. Высота такого холма небольшая - около 300 - 500 м.

Окраины антеклизы ступенями спускаются к окружающим их (от греч. syn - вместе и enklisis - наклонение). На окраинах синеклиз и антеклиз часто встречаются отдельные валы и купола - мелкие тектонические формы. Для платформ, прежде всего, характерны ритмические колебания, что приводило к последовательной смене поднятий и опусканий. В процессе этих движений возникали прогибы, небольшие складки, тектонические трещины.

Строение осадочного чехла на платформах осложняют тектонические структуры, появление которых объяснить непросто. Например, под северной частью дна и под Прикаспийской низменностью скрыт огромный замкнутый со всех сторон бассейн глубиной более 22 км. В поперечнике этот бассейн достигает 2000 км. Его заполняют глины, известняки, каменная соль и другие породы. Верхние 5 - 8 км осадков относят к палеозойскому возрасту. По геофизическим данным, в центре этой впадины отсутствует гранито-гнейсовый слой и толща осадочных пород залегает непосредственно на гранулито-базальтовом слое. Такое строение больше характерно для впадин с океаническим типом земной коры, поэтому Прикаспийскую впадину считают реликтом древнейших докембрийских океанов.

Полной противоположностью платформам являются орогенические пояса - горные пояса, возникшие на месте прежних геосинклиналей. Они, так же как и платформы, принадлежат к длительно развивающимся тектоническим структурам, но скорости движения земной коры в них оказались значительно большими, а силы сжатия и растяжения создали на поверхности Земли крупные горные хребты и впадины. Тектонические напряжения в орогенических поясах то усиливались, то резко уменьшались, а потому можно проследить и фазы роста горных сооружений, и фазы их разрушения.

Боковое сжатие блоков земной коры в прошлом нередко приводило к разделению блоков на тектонические пластины, каждая из которых имела толщину 5-10 км. Тектонические пластины коробились и часто надвигались одна на другую. В результате древние породы оказывались надвинутыми на более молодые породы. Крупные надвиги, измеряемые десятками километров, ученые называют шарьяжами. Их особенно много в , и , но шарьяжи встречаются и на платформах, где смещение пластин земной коры приводило к образованию складок и валов, например в Жигулевских горах.

Дно морей и океанов долго оставалось малоисследованной областью Земли. Только в первой половине XX в. были открыты срединно-океанические хребты, которые впоследствии были обнаружены во всех океанах планеты. Они имели разную структуру и возраст. Результаты глубоководного бурения тоже способствовали изучению структуры срединно-океанических хребтов. Осевые зоны срединно-океанических хребтов вместе с рифтовыми впадинами бывают смещены на сотни и тысячи километров. Эти смещения наиболее часто происходят по крупным разломам (так называемым трансформным разломам), которые образовались в разные геологические эпохи.

Земная кора в научном понимании представляет собой самую верхнюю и твердую геологическую часть оболочки нашей планеты.

Научные исследования позволяют изучить ее досконально. Этому способствуют многократные бурения скважин как на континентах, так и на океанском дне. Строение земли и земной коры на различных участках планеты отличаются и и по составу, и по характеристикам. Верхней границей земной коры является видимый рельеф, а нижней - зона разделения двух сред, которая также известна как поверхность Мохоровичича. Часто ее называют просто "граница М". Это наименование она получила благодаря хорватскому сейсмологу Мохоровичичу А. Он долгие годы наблюдал за скоростью сейсмических движений в зависимости от уровня глубины. В 1909 году он установил наличие разницы между земной корой и раскаленной мантией Земли. Граница М пролегает на том уровне, где скорость сейсмических волн повышается с 7.4 до 8.0 км/с.

Химический состав Земли

Изучая оболочки нашей планеты, ученые делали интересные и даже потрясающие выводы. Особенности строения земной коры делают ее схожей с такими же участками на Марсе и Венере. Более чем 90 % составляющих элементов ее представлены кислородом, кремнием, железом, алюминием, кальцием, калием, магнием, натрием. Сочетаясь между собой в различных комбинациях, они образуют однородные физические тела - минералы. Они могут войти в состав горных пород в разных концентрациях. Строение земной коры весьма неоднородно. Так, горные породы в обобщенном виде представляют собой агрегаты более-менее постоянного химического состава. Это самостоятельные геологические тела. Под ними понимается четко очерченная область земной коры, имеющая в своих границах одинаковое происхождение, возраст.

Горные породы по группам

1. Магматические. Название говорит само за себя. Они возникают из остывшей магмы, вытекающей из жерла древних вулканов. Строение этих пород напрямую зависит от скорости застывания лавы. Чем она больше, тем меньше кристаллы вещества. Гранит, например, сформировался в толще земной коры, а базальт появился в результате постепенного излияния магмы на ее поверхность. Многообразие таких пород довольно велико. Рассматривая строение земной коры, мы видим, что она состоит из магматических минералов на 60 %.

2. Осадочные. Это породы, которые стали результатом постепенного отложения на суше и дне океана обломков тех или иных минералов. Это могут быть как рыхлые компоненты (песок, галька), сцементированные (песчаник), остатки микроорганизмов (каменный уголь, известняк), продукты химических реакций (калийная соль). Они составляют до 75 % всей земной коры на материках.
По физиологическому способу образования осадочные породы делятся на:

  • Обломочные. Это остатки различных горных пород. Они разрушались под воздействием природных факторов (землетрясение, тайфун, цунами). К ним можно отнести песок, гальку, гравий, щебень, глину.
  • Химические. Они постепенно образуются из водных растворов тех или иных минеральных веществ (соли).
  • Органические или биогенные. Состоят из останков животных или растений. Это горючие сланцы, газ, нефть, уголь, известняк, фосфориты, мел.

3. Метаморфические породы. В них могут превращаться другие компоненты. Это происходит под воздействием изменяющейся температуры, большого давления, растворов или газов. Например, из известняка можно получить мрамор, из гранита - гнейс, из песка - кварцит.

Минералы и горные породы, которые человечество активно использует в своей жизнедеятельности, называются полезными ископаемыми. Что они собой представляют?

Это природные минеральные образования, которые влияют на строение земли и земной коры. Они могут использоваться в сельском хозяйстве и промышленности как в естественном виде, так и подвергаясь переработке.

Виды полезных минералов. Их классификация

В зависимости от физического состояния и агрегации, полезные ископаемые можно разделить на категории:

  1. Твердые (руда, мрамор, уголь).
  2. Жидкие (минеральная вода, нефть).
  3. Газообразные (метан).

Характеристики отдельных видов полезных ископаемых

По составу и особенностям применения различают:

  1. Горючие (уголь, нефть, газ).
  2. Рудные. Они включают радиоактивные (радий, уран) и благородные металлы (серебро, золото, платина). Есть руды черных (железо, марганец, хром) и цветных металлов (медь, олово, цинк, алюминий).
  3. Нерудные полезные ископаемые играют существенную роль в таком понятии, как строение земной коры. География их обширна. Это неметаллические и негорючие горные породы. Это строительные материалы (песок, гравий, глина) и химические вещества (сера, фосфаты, калийные соли). Отдельный раздел посвящен драгоценным и поделочным камням.

Распределение полезных ископаемых по нашей планете напрямую зависит от внешних факторов и геологических закономерностей.

Так, топливные полезные ископаемые в первую очередь добываются в нефтегазоносных и угольных бассейнах. Они имеют осадочное происхождение и формируются на осадочных чехлах платформ. Нефть и уголь крайне редко залегают вместе.

Рудные полезные ископаемые чаще всего соответствуют фундаменту, выступам и складчатым областям платформенных плит. В таких местах они могут создавать огромные по протяженности пояса.

Ядро


Земная оболочка, как известно, многослойна. Ядро располагается в самом центре, а его радиус приблизительно равен 3 500 км. Его температура гораздо выше, чем у Солнца и составляет около 10000 К. Точных данных о химическом составе ядра не получено, но предположительно оно состоит из никеля и железа.

Внешнее ядро находится в расплавленном состоянии и имеет еще большую мощность, чем внутреннее. Последнее подвергается колоссальному давлению. Вещества, из которых оно состоит, находятся в постоянном твердом состоянии.

Мантия

Геосфера Земли окружает ядро и составляет около 83 процентов от всей оболочки нашей планеты. Нижняя граница мантии находится на огромной глубине почти 3000 км. Данную оболочку принято условно разделять на менее пластичную и плотную верхнюю часть (именно из нее образуется магма) и на нижнюю кристаллическую, ширина которой составляет 2000 километров.

Состав и строение земной коры

Для того чтобы говорить о том, какие элементы входят в состав литосферы, нужно дать некоторые понятия.

Земная кора - это самая внешняя оболочка литосферы. Ее плотность меньше в два раза по сравнению со средней плотностью планеты.

От мантии земная кора отделена границей М, о которой уже говорилось выше. Так как процессы, происходящие на обоих участках, взаимно влияют друг на друга, их симбиоз принято называть литосферой. Это означает "каменная оболочка". Ее мощность колеблется в пределах 50-200 километров.

Ниже литосферы расположена астеносфера, которая обладает менее плотной и вязкой консистенцией. Ее температура составляет около 1200 градусов. Уникальной особенностью астеносферы является возможность нарушать свои границы и проникать в литосферу. Она является источником вулканизма. Здесь находятся расплавленные очаги магмы, которая внедряется в земную кору и изливается на поверхность. Изучая эти процессы, ученые смогли сделать много удивительных открытий. Именно так изучалось строение земной коры. Литосфера была сформирована много тысяч лет назад, но и сейчас в ней происходят активные процессы.

Структурные элементы земной коры

По сравнению с мантией и ядром, литосфера - это жесткий, тонкий и очень хрупкий слой. Она сложена из комбинации веществ, в составе которых на сегодняшний день обнаружено более 90 химических элементов. Они распределены неоднородно. 98 процентов массы земной коры приходится на семь составляющих. Это кислород, железо, кальций, алюминий, калий, натрий и магний. Возраст самых древних пород и минералов составляет более 4.5 миллиардов лет.

Изучая внутреннее строение земной коры, можно выделить различные минералы.
Минерал - сравнительно однородное вещество, которое может находиться как внутри, так и на поверхности литосферы. Это кварц, гипс, тальк и т.д. Горные породы слагаются из одного или нескольких минералов.

Процессы, формирующие земную кору

Строение океанической земной коры

Данная часть литосферы преимущественно состоит из базальтовых пород. Строение океанической земной коры изучено не так досконально, как континентальное. Теория тектонических плит объясняет, что океаническая земная кора является относительно молодой, а самые ее последние участки можно датировать поздней юрой.
Ее толщина практически не изменяется со временем, так как она определяется количеством расплавов, выделяющихся из мантии в зоне срединно-океанических хребтов. На нее существенно влияет глубина осадочных слоев на дне океана. В наиболее объемных участках она составляет от 5 до 10 километров. Данный вид земной оболочки относится к океанической литосфере.

Континентальная кора

Литосфера взаимодействует с атмосферой, гидросферой и биосферой. В процессе синтеза они образуют самую сложную и реакционно активную оболочку Земли. Именно в тектоносфере происходят процессы, изменяющие состав и строение этих оболочек.
Литосфера на земной поверхности не однородна. Она имеет несколько слоев.

  1. Осадочный. Он в основном образуется горными породами. Здесь преобладают глины и сланцы, а также широко распространены карбонатные, вулканогенные и песчаные породы. В осадочных слоях можно встретить такие полезные ископаемые, как газ, нефть и каменный уголь. Все они имеют органическое происхождение.
  2. Гранитный слой. Он состоит из магматических и метаморфических пород, которые наиболее близки по своей природе к граниту. Этот слой встречается далеко не везде, наиболее ярко он выражен на континентах. Здесь его глубина может составлять десятки километров.
  3. Базальтовый слой образуют породы, близкие к одноименному минералу. Он более плотный, чем гранит.

Глубина и изменение температуры земной коры

Поверхностный слой прогревается солнечным теплом. Это гелиометрическая оболочка. Она испытывает сезонные колебания температуры. Средняя мощность слоя составляет около 30 м.

Ниже находится слой, еще более тонкий и хрупкий. Его температура постоянна и приблизительно равна среднегодовой, характерной для этой области планеты. В зависимости от континентального климата глубина этого слоя увеличивается.
Еще глубже в земной коре находится еще один уровень. Это геотермический слой. Строение земной коры предусматривает его наличие, а его температура определяется внутренним теплом Земли и возрастает с глубиной.

Повышение температуры происходит за счет распада радиоактивных веществ, которые входят в состав горных пород. В первую очередь это радий и уран.

Геометрический градиент - величина нарастания температуры в зависимости от степени увеличения глубины слоев. Этот параметр зависит от разных факторов. Строение и типы земной коры влияют на него, так же как и состав горных пород, уровень и условия их залегания.

Тепло земной коры является важным энергетическим источником. Его изучение очень актуально на сегодняшний день.

Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным строением земной коры. Следовательно, эти структурные элементы должны пониматься в геологическом, вернее даже в геофизическом смысле, так как определить тип строения земной коры возможно только сейсмическими методами. Отсюда ясно, что не все пространство, занятое водами океана, представляет собой в геофизическом смысле океанскую структуру, так как обширные шельфовые области, например в Северном Ледовитом океане, обладают континентальной корой. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами, и эти различия охватывают всю литосферу, а местами и тектоносферу, т.е. прослеживаются до глубин примерно в 700 км.

В пределах океанов и континентов выделяются менее крупные структурные элементы, во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной.

В океанах, как структурных элементах, выделяются срединно-океинские подвижные пояса, представленные срединно-океанскими хребтами с рифтовыми зонами в их осевой части, пересеченными трансформными разломами и являющиеся в настоящее время зонами спрединга, т.е. расширения океанского дна и наращивания новообразованной океанской коры. Следовательно, в океанах как структурах выделяются устойчивые платформы (плиты) и мобильные срединно-океанские пояса.

На континентах как структурных элементах высшего ранга выделяются стабильные области - платформы и эпиплатформенные орогенные пояса, сформировавшиеся в неоген-четвертичное время в устойчивых структурных элементах земной коры после периода платформенного развития. К таким поясам можно отнести современные горные сооружения Тянь-Шаня, Алтая, Саян, Западного и Восточного Забайкалья, Восточную Африку и др. Кроме того, подвижные геосинклинальные пояса, подвергнувшиеся складчатости и орогенезу в альпийскую эпоху, т.е. также в неоген-четвертичное время, составляют эпигеосинклинальные орогенные пояса, такие, как Альпы, Карпаты, Динариды, Кавказ, Копетдаг, Камчатка и др.



На территории некоторых континентов, в зоне перехода континент-океан (в геофизическом смысле) находятся окраинно-континентальные, по терминологии В.Е. Хаина, подвижные геосинклинальные пояса, представляющие собой сложное сочетание окраинных морей, островных дуг и глубоководных желобов. Это пояса высокой современной тектонической активности, контрастности движений, сейсмичности и вулканизма. В геологическом прошлом функционировали и межконтинентальные геосинклинальные пояса, например Урало-Охотский, связанный с древним палео-Азиатским океанским бассейном, и др.

Учение о геосинклиналях в 1973 г. отметило свое столетие с того времени, как американский геолог Д. Дэна ввел это понятие в геологию, а еще раньше, в 1857 г., также американец Дж. Холл сформулировал в целом эту концепцию, показав, что горно-складчатые структуры возникли на месте прогибов, ранее выполнявшихся разнообразными морскими отложениями. В силу того, что общая форма этих прогибов была синклинальной, а масштабы прогибов очень большими, их и назвали геосинклиналями.

За прошедшее столетие учение о геосинклиналях набирало силу, разрабатывалось, детализировалось и благодаря усилиям большой армии геологов различных стран сформировалось в стройную концепцию, представляющую собой эмпирическое обобщение огромного фактического материала, но страдавшую одним существенным недостатком: оно не давало, как совершенно справедливо полагает В.Е. Хаин, геодинамической интерпретации наблюдаемых конкретных закономерностей развития отдельных геосинклиналей. Устранить этот недостаток в настоящее время способна концепция тектоники литосферных плит, возникшая всего лишь 25 лет назад, но быстро превратившаяся в ведущую геотектоническую теорию. С точки зрения этой теории геосинклинальные пояса возникают на границах взаимодействия различных литосферных плит. Рассмотрим основные структурные элементы земной коры более подробно.

Древние платформы являются устойчивыми глыбами земной коры, сформировавшимися в позднем архее или раннем протерозое. Их отличительная черта - двухэтажность строения. Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными толщами пород, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранитогнейсовых куполов или овалов - специфической формой метаморфогенной складчатости (рис. 16.1). Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине. Площадь древних платформ на материках приближается к 40 % и для них характерны угловатые очертания с протяженными прямолинейными границами - следствием краевых швов (глубинных разломов). Складчатые области и системы либо надвинуты на платформы, либо граничат с ними через передовые прогибы, на которые в свою очередь надвинуты складчатые орогены. Границы древних платформ резко несогласно пересекают их внутренние структуры, что свидетельствует об их вторичном характере в результате раскола суперматерика Пангеи-1, возникшего в конце раннего протерозоя.

Верхний этаж платформ представлен чехлом, или покровом, полого залегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Поверхность между чехлом и фундаментом отражает самое важное структурное несогласие в пределах платформ. Строение платформенного чехла оказывается сложным и на многих платформах на ранних стадиях его образования возникают грабены, грабенообразные прогибы - авлакогены (от греч. "авлос" - борозда, ров; "ген" - рожденный, т.е. рожденные рвом), как их впервые назвал Н.С. Шатский. Авлакогены чаще всего формировались в позднем протерозое (рифее) и образовывали в теле фундамента протяженные системы. Мощность континентальных и реже морских отложений в авлакогенах достигает 5-7 км, а глубокие разломы, ограничивавшие авлакогены, способствовали проявлению щелочного, основного и ультраосновного магматизма, а также специфического для платформ траппового магматизма с континентальными толеитовыми базальтами, силлами и дайками. Этот нижний структурный ярус платформенного чехла, соответствующий авлакогенному этапу развития, сменяется сплошным чехлом платформенных отложений, чаще всего начинающимся с вендского времени.

Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты. Щит - это выступ на поверхность фундамента платформы, который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Плита - часть платформы, перекрытая чехлом отложений и обладающая тенденцией к прогибанию. В пределах плит различаются более мелкие структурные элементы. В первую очередь это синеклизы - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы - пологие своды с поднятым фундаментом и относительно утоненным чехлом.

По краям платформ, там, где они граничат со складчатыми поясами, часто образуются глубокие впадины, называемые перикратонными (т.е. на краю кратона, или платформы). Нередко антеклизы и синеклизы осложнены второстепенными структурами меньших размеров: сводами, впадинами, валами. Последние возникают над зонами глубоких разломов, крылья которых испытывают разнонаправленные движения и в чехле платформы выражены узкими выходами древних отложений чехла из-под более молодых. Углы наклона крыльев валов не превышают первых градусов. Часто встречаются флексуры - изгибы слоев чехла без разрыва их сплошности и с сохранением параллельности крыльев, возникающие над зонами разломов в фундаменте при подвижке его блоков. Все платформенные структуры очень пологие и в большинстве случаев непосредственно измерить наклоны их крыльев невозможно.

Состав отложений платформенного чехла разнообразный, но чаще всего преобладают осадочные породы - морские и континентальные, образующие выдержанные пласты и толщи на большой площади. Весьма характерны карбонатные формации, например, белого писчего мела, органогенных известняков, типичных для гумидного климата и доломитов с сульфатными осадками, образующимися в аридных климатических условиях. Широко развиты континентальные обломочные формации, приуроченные, как правило, к основанию крупных комплексов, отвечающих определенным этапам развития платформенного чехла. На смену им нередко приходят эвапоритовые или угленосные паралические формации и терригенные - песчаные с фосфоритами, глинисто-песчаные, иногда пестроцветные. Карбонатные формации знаменуют собой обычно "зенит" развития комплекса, а далее можно наблюдать смену формаций в обратной последовательности. Для многих платформ типичны покровно-ледниковые отложения.

Платформенный чехол в процессе формирования неоднократно претерпевал перестройку структурного плана, приуроченную к рубежам крупных геотектонических циклов: байкальского, каледонского, герцинского, альпийского и др. Участки платформ, испытывавшие максимальные погружения, как правило, примыкают к той пограничной с платформой подвижной области или системе, которая в это время активно развивалась.

Для платформ характерен и специфический магматизм, проявляющийся в моменты их тектономагматической активизации. Наиболее типична трапповая формация, объединяющая вулканические продукты - лавы и туфы и интрузивы, сложенные толеитовыми базальтами континентального типа с несколько повышенным по отношению к океанским содержанием оксида калия, но все же не превышающим 1- 1,5 %. Объем продуктов трапповой формации может достигать 1-2 млн. км 3 , как, например, на Сибирской платформе. Очень важное значение имеет щелочно-ультраосновная (кимберлитовая) формация, содержащая алмазы в продуктах трубок взрыва (Сибирская платформа, Южная Африка).

Кроме древних платформ выделяют и молодые, хотя чаще их называют плитами, сформировавшимися либо на байкальском, каледонском или герцинском фундаменте, отличающемся большей дислоцированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованностью структур чехла от структур фундамента. Примерами таких платформ (плит) являются: эпибайкальская Тимано-Печорская, эпигерцинская Скифская, эпипалеозойская Западно-Сибирская и др.

Подвижные геосинклинальные пояса являются чрезвычайно важным структурным элементом земной коры, обычно располагающимся в зоне перехода от континента к океану и в процессе эволюции формирующим мощную континентальную кору. Смысл эволюции геосинклинали заключается в образовании прогиба в земной коре в условиях тектонического растяжения. Этот процесс сопровождается подводными вулканическими излияниями, накоплением глубоководных терригенных и кремнистых отложений. Затем возникают частные поднятия, структура прогиба усложняется и за счет размыва поднятий, сложенных основными вулканитами, формируются граувакковые песчаники. Распределение фаций становится более прихотливым, появляются рифовые постройки, карбонатные толщи, а вулканизм более дифференцированным. Наконец, поднятия разрастаются, происходит своеобразная инверсия прогибов, внедряются гранитные интрузивы и все отложения сминаются в складки. На месте геосинклинали возникает горное поднятие, перед фронтом которого растут передовые прогибы, заполняемые молассами. - грубообломочными продуктами разрушения гор, а в последних развивается наземный вулканизм, поставляющий продукты среднего и кислого состава - андезиты, дациты, риолиты. В дальнейшем горно-складчатое сооружение размывается, так как темп поднятий падает, и ороген превращается в пенепленизированную равнину. Такова общая идея геосинклинального цикла развития.

Рис. 16.2. Схематический разрез через срединно-океанский хребет (по Т. Жюто, с упрощением)

Успехи в изучении океанов привели в 60-е годы нашего века к созданию новой глобальной геотектонической теории - тектоники литосферных плит, позволившей на актуалистической основе воссоздать историю развития подвижных геосинклинальных областей и перемещения континентальных плит. Суть этой теории заключается в выделении крупных литосферных плит, границы которых маркируются современными поясами сейсмичности, и во взаимодействии плит путем их перемещения и вращения. В океанах происходит наращивание, расширение океанской коры путем ее новообразования в рифтовых зонах срединно-океанских хребтов (рис. 16. 2). Поскольку радиус Земли существенно не меняется, новообразованная кора должна поглощаться и уходить под континентальную, т.е. происходит ее субдукция (погружение).

Эти районы отмечены мощной вулканической деятельностью, сейсмичностью, наличием островных дуг, окраинных морей, глубоководных желобов, как, например, на восточной периферии Евразии. Все эти процессы отмечают собой активную континентальную окраину, т.е. зону взаимодействия океанской и континентальной коры. Напротив, те участки континентов, которые составляют с частью океанов единую литосферную плиту, как, например, по западной и восточной окраин Атлантики, называются пассивной континентальной окраиной и лишены всех перечисленных выше признаков, но характеризуются мощной толщей осадочных пород над континентальным склоном (рис. 16.3). Сходство вулканогенных и осадочных пород ранних стадий развития геосинклиналей, так называемой офиолитовой ассоциации, с разрезом коры океанского типа позволило предположить, что последние закладывались на океанской коре и дальнейшее развитие океанского бассейна приводило сначала к его расширению, а затем закрытию с образованием вулканических островных дуг, глубоководных желобов и формированию мощной континентальной коры. В этом видят сущность геосинклинального процесса.

Таким образом, благодаря новым тектоническим идеям, учение о геосинклиналях обретает как бы "второе дыхание", позволяющее реконструировать геодинамическую обстановку их эволюции на базе актуалистических методов. Исходя из сказанного, под геосинклинальным поясом, (окраинно- или межконтинентальным) понимается подвижной пояс протяженностью в тысячи километров, закладывающийся на границе литосферных плит, характеризующийся длительным проявлением разнообразного вулканизма, активного осадконакопления и на конечных стадиях развития превращающийся в горно-складчатое сооружение с мощной континентальной корой. Примером таких глобальных поясов являются: межконтинентальные - Урало-Охотский палеозойский; Средиземноморский альпийский; Атлантический палеозойский; окраинно-континентальные - Тихоокеанский мезозойско-кайнозойский и др. Геосинклинальные пояса подразделяются на геосинклинальные области - крупные отрезки поясов, отличающиеся историей развития, структурой и отделяющиеся друг от друга глубокими поперечными разломами, пережимами и т.д. В свою очередь, в пределах областей могут быть выделены геосинклинальные системы, разделяющиеся жесткими блоками земной коры - срединными массивами или микроконтинентами, структурами, которые во время погружения окружающих районов оставались стабильными, относительно приподнятыми и на которых накапливался маломощный чехол. Как правило, эти массивы являются обломками той первичной древней платформы, которая подверглась дроблению при заложении подвижного геосинклинального пояса.

В конце 30-х годов нашего столетия Г. Штилле и М. Кэй подразделили геосинклиналии на эв- и миогеосинклинали. Эвгеосинклиналью ("полной, настоящей, геосинклиналью") они называли более внутреннюю по отношению к океану зону подвижного пояса, отличавшуюся особо мощным вулканизмом, ранним (или начальным) подводным, основного состава; наличием ультраосновных интрузивных (поих мнению) пород; интенсивной складчатостью и мощным метаморфизмом. В то же время миогеосинклиналь ("не настоящая геосинклиналь") характеризовалась внешним положением (по отношению к океану), контактировала с платформой, закладывалась на коре континентального типа, отложения в ней были слабее метаморфизованы, вулканизм также был развит слабо или совсем отсутствовал, а складчатость наступала позднее, чем в эвгеосинклинали. Такое разделение геосинклинальных областей на эв- и миогеосинклинальные прекрасно выражено на Урале, в Аппалачах, Североамериканских Кордильерах и в других складчатых областях.

Важную роль стала играть офиолитовая ассоциация пород, широко распространенная в разнообразных эвгеосинклиналях. Нижняя часть разреза такой ассоциации состоит из ультраосновных, часто серпентинизированных пород - гарцбургитов, дунитов; выше располагается так называемый расслоенный или кумулятивный комплекс габброидов и амфиболитов; еще выше - комплекс параллельных даек, сменяющийся подушечными толеитовыми базальтами, перекрываемыми кремнистыми сланцами (рис. 16.4). Такая последовательность близка разрезу океанской коры. Значение этого сходства трудно переоценить. Офиолитовая ассоциация в складчатых областях, залегающая, как правило, в покровных пластинах, является реликтом, следами былого морского бассейна (не обязательно океана!) с корой океанского типа. Отсюда не следует, что океан отождествляется с геосинклинальным поясом. Кора океанского типа могла располагаться только в его центре, а по периферии это была сложная система островных дуг, окраинных морей, глубоководных желобов и т.д., да и сама кора океанского типа могла быть в окраинных морях. Последующее сокращение океанского пространства приводило к сужению подвижного пояса в несколько раз. Океанская кора в основании эвгеосинклинальных зон может быть как древней, так и новообразованной, сформировавшейся при раскалывании и раздвиге континентальных массивов.

Платформа (от франц.plat - плоский иforme - форма) - крупная (несколько тыс. км в поперечнике), относительно устойчивая часть земной коры, характеризующаяся очень низкой степенью сейсмичности.

Платформа имеет двухэтажное строение (рис. 2). Нижний этаж -фундамент - это древняя геосинклинальная область - образован метаморфизованными породами, верхний -чехол - морскими осадочными отложениями небольшой мощности, что свидетельствует о небольшой амплитуде колебательных движений.

Рис. 2. Строение платформы

Возраст платформ различен и определяется по времени становления фундамента. Наиболее древними являются платформы, фундамент которых образован смятыми в складки кристаллическими породами докембрия. Таких платформ на Земле десять (рис. 3).

Поверхность докембрийского кристаллического фундамента очень неровная. В одних местах он выходит на поверхность илизалегает вблизи нее, образуящиты, в других -антеклизы (от греч.anti - против иklisis - наклонение) исинеклизы (от греч. syn - вместе,klisis - наклонение). Однако эти неровности перекрыты осадочными отложениями со спокойным, близким к горизонтальному залеганием. Осадочные породы могут быть собраны в пологие валы, куполовидные поднятия, ступенеобразные изгибы, а иногда наблюдаются и разрывные нарушения с вертикальным смешением пластов. Нарушения в залегании осадочных пород обусловлены неодинаковой скоростью и разными знаками колебательных движений блоков кристаллического фундамента.

Рис. 3. До кембрийские платформы: I - Северо-Американская; II - Восточно-Европейская; III - Сибирская; IV - Южно-Американская; V - Африкано-Аравийская; VI - Индийская; VII - Восточно-Китайская; VIII - Южно-Китайская; IX - Австралийская; X - Антарктическая

Фундамент более молодых платформ образован в периодыбайкальской ,каледонской или герцинской складчатости. Области мезозойской складчатости не принято называть платформами, хотя они и являются таковыми на сравнительно раннем этапе развития.

В рельефе платформам соответствуют равнины. Однако некоторые платформы испытали серьезную перестройку, выразившуюся в общем поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. Так возникли складчато-глыбовые горы, примером которых могут служить горы Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.

На протяжении всей геологической истории в континентальной земной коре происходило наращивание площади платформ и сокращение геосинклинальных зон.

Внешние (экзогенные) процессы обусловлены поступающей на Землю энергией солнечного излучения. Экзогенные процессы сглаживают неровности, выравнивают поверхности, заполняют понижения. Они проявляются на земной поверхности и как разрушительные, и как созидательные.


Разрушительные процессы - это разрушение горных пород, происходящее из-за перепада температур, действия ветра, размывания потоками воды, движущимися ледниками.Созидательные процессы проявляются в накоплении переносимых водой и ветром частиц в понижениях суши, на дне водоемов.

Самым сложным внешним фактором является выветривание.

Выветривание - совокупность естественных процессов, приводящих к разрушению горных пород.

Выветривание условно подразделяется на физическое и химическое.

Основными причинамифизического выветривания являются колебания температуры, связанные с суточными и сезонными изменениями. В результате перепалов температур образуются трещины. Вода, попадающая в них, замерзая и оттаивая, расширяет трещины. Так происходит выравнивание выступов горных пород, появляются осыпи.

Важнейшим факторомхимического выветривания также является вода и растворенные в ней химические соединения. При этом значительную роль играют климатические условия и живые организмы, продукты жизнедеятельности которых влияют на состав и растворяющие свойства воды. Большой разрушительной силой обладает и корневая система растений.

Процесс выветривания приводит к образованию рыхлых продуктов разрушения горных пород, которые называютсякорой выветривания. Именно на ней постепенно образуется почва.

Из-за выветривания поверхность Земли все время обновляется, стираются следы прошлого. В то же время внешние процессы создают формы рельефа, обусловленные деятельностью рек, ледников, ветра. Все они образуют специфические формы рельефа - речные долины, овраги, ледниковые формы и т. д.

Наиболее крупными структурными элементами земной коры являются континенты и океаны. Различия между этими двумя крупнейшими структурными элементами не ограничиваются только типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами, и эти различия охватывают всю литосферу, а местами и тектоносферу. В пределах континентов и океанов выделяют менее крупные структурные элементы.

Структурные элементы континентальной земной коры. К числу основных структурных элементов континентов относятся континентальные платформы и подвижные пояса, а также глубинные разломы.

Континентальные платформы (кратоны) представляют собой своеобразные ядра материков и занимают большие части их площадей – порядка миллиона квадратных километров. Они слагаются типичной континентальной корой мощностью 35 – 45 км. Литосфера в их пределах достигает мощности 150 – 200 км, а по некоторым данным – 400 км.

В строении платформ различают два структурных этажа: фундамент и чехол. Мощность осадочного чехла составляет в среднем 3 – 5 км, а в наиболее глубоких прогибах и впадинах достигает 10-12 км. В исключительных случаях (Прикаспийская низменность) – 20 – 25 км. Кристаллический фундамент составляет нижний структурный этаж платформ и сложен преимущественно в различной степени метаморфизированными, а также интрузивно-магматическими породами, среди которых ведущая роль принадлежит граниту. Платформы обычно характеризуются равнинным рельефом, то низменным, то плоскогорным. Некоторые их части могут быть покрыты мелкими, эпиконтинентальными морями, типа современных Азовского, Балтийского, белого. Их характеризует также низкая скорость современных вертикальных движений, слаба сейсмичность, отсутствие или редкое проявление вулканической деятельности, пониженный по сравнению со среднеземным тепловой поток. В общем, платформы – это наиболее устойчивые и спокойные участки континентов.

Наиболее типичными являются древние платформы, т.е. платформы, кристаллический фундамент которых формировался в течение архея – протерозоя. Докембрийские платформы составляют древнейшие и центральные части материков и занимают около 40% их площади; термин «кратон» обычно применяется именно к ним. К числу древних платформ относятся Северо - Американская, Южно-Американская, Восточно-Европейская, Сибирская, Китайско-Корейская, Африканская, Индостанская, Австралийская, Антарктическая, Южно-Китайская. В фундаменте древних платформ преобладают архейские и раннепротерозойские образования. Эти образования, как правило, глубоко метаморфизированны; главную роль среди них играют гнейсы и кристаллические сланцы, широко распространены граниты. Поэтому такой фундамент называют гранито-гнейсовый или просто кристаллический.

Значительно меньшую площадь в структуре материков (5%) занимают молодые платформы, которые располагаются либо по периферии материков, как Средне- и Западно-Европейские, Восточно-Австралийская, Патагонская, либо между древними платформами, например, Западно-Сибирская платформа между древними Восточно-Европейской и Сибирской. Фундамент молодых платформ слагается в основном фанерозойскими осадочно-вулканическими породами, испытавшими слабый или даже начальный метаморфизм. Граниты и другие интрузивные образования, среди которых следует отметить офиолитовые пояса, играют подчиненную роль в составе этого фундамента, который в отличие от фундамента древних платформ именуется не кристаллическим, а складчатым. В зависимости от возраста завершающей складчатости этого фундамента молодые платформы или их части подразделяются на эпикаледонские, эпигерцинские, эпикиммерийские. Молодые платформы в значительно большей степени покрыты осадочным чехлом, чем древние, и по этой причине их часто именуют просто плитами. Выступы фундамента, не затронутые новейшей тектонической активизацией и поэтому не превращенные во внутриконтинентальные орогены, встречаются скорее в виде исключения, одно из них – Казахский щит. Соответственно молодые платформы обладают за пределами таких щитов или массивов равнинным, часто низменным характером.

Поверхность платформ неоднородна. Здесь можно выделить несколько более мелких тектонических единиц:

Кристаллические щиты характерны преимущественно для древних платформ и представляют собой крупные площади выхода на дневную поверхность кристаллического фундамента. На протяжении практически всей геологической истории эти участки континентальной земно коры обнаруживают устойчивую тенденцию к поднятию и денудации, вследствие чего осадочный чехол здесь имеет небольшие мощности. Кристаллические щиты легко выделяются в пределах платформ северного ряда, где они со всех сторон окружены осадочным чехлом (Канадский, Украинский, Алданский, Анабарский, Балтийский щиты), но значительно труднее в пределах платформ южного ряда, особенно Африканской и Индостанской, на большей части площади которых кристаллический фундамент обнажается на поверхности, а осадочный чехол, напротив, распространен более ограниченно, в пределах замкнутых впадин. В пределах молодых платформ кристаллические щиты или кристаллические массивы практически не встречаются.



Антеклизы представляют собой крупные и пологие погребенные поднятия фундамента, в сотни километров в поперечнике. Глубина залегания фундамента и соответственно мощность осадочного чехла в их сводовых частях не превышает 1 – 2 км. Иногда в центре антеклизы имеются относительно небольшие выходы фундамента (Воронежская антеклиза Русской плиты, Оленекская антеклиза в Сибири и т.д.). В некоторых случаях антеклизы являются как бы многовершинными; эти вершины именуются сводами, например Татарский и Токмаковский своды Вогло-Уральской антеклизы.

Синеклизы – крупные, пологие, почти плоские впадины фундамента до 3 – 5 км и относительно более мощным осадочным чехлом. Следует иметь ввиду, что антеклизы и синеклизы – очень пологие структурные формы: угол наклона слоев составляет менее 1 0 . На гондванских платформах синеклизы представляют собой изолированы впадины, окруженные выходами фундамента (синеклизы Конго, Амазонская и т.д.). На платформах северного ряда синеклизы обычно граничат с антеклизами, либо с щитами. Типичными являются Московская синеклиза Русской плиты, Амударьинская синеклиза Туранской плиты и т.д.

Авлакогены – четкие линейные грабен – прогибы, протягивающиеся на многие сотни километров при ширине в десятки, а иногда и сотни километров, ограниченные разломами (сбросами) и выполненные мощными толщами осадков. Глубина залегания фундамента нередко достигает 10 – 12 км, а консолидированные кора и литосфера в целом часто утончены. Геологическая эволюция авлакогенов имеет двоякую природу. В одних случаях, происходит перерождение авлакогенов через равновеликие прогибы в синеклизы и представляет собой обычное явление. Многие ученые, в частности Н.С. Шатский, считают, что в основании большей части, если не всех синеклиз, должны находиться палеорифты – авлакогены. В других случаях в результате процессов сжатия литосферы, авлакогены эволюционируют в складчатые зоны различной степени сложности – валы.

Подвижные пояса. Среди подвижных поясов континентов различают складчатые пояса, эпиплатформенные орогены и рифты.

Складчатые пояса . Представляют собой линейные планетарные структуры, протяженностью во многие тысячи километров и шириной более 1000 км. Занимают окраинно-континентальное или межконтинентальное положения, разделяя и обрамляя континентальные платформы (Тихоокеанский, Урало-Охотский, Средиземноморский, Северо-Атлантический, Арктический). Это очень сложные и разнообразные по строению структуры, которые начали формироваться в протерозое и представляют собой орогенные покрово-складчатые сооружения с повышенной мощностью континентальной коры и сильно расчлененным рельефом. Они сложены мощными слоями осадочных и вулканогенных пород, смятыми в складки и перемещенными относительно друг друга по зонам разломов. Это тектонически активные области континентов, которые отличаются высокой сейсмичностью, интенсивным проявлением процессов магматизма и метаморфизма. Для них характерны значительные скорости и амплитуды тектонических движений. От соседних континентальных платформ складчатые пояса отделяются прогибами, либо краевыми швами, которые представлены глубинными разломами. Основными структурными элементами подвижных поясов являются складчатые области (крупные отрезки поясов, различающиеся историей развития, строением и отделенные друг от друга крупными поперечными разломами; Восточно-Казахстанская, Алтае-Саянская и Монголо-Охотская области Урало-Охотского пояса); складчатые системы (отчетливые линейные структуры, выделяемые в пределах складчатых областей, имеющие протяженность более тысячи километров и разделенные жесткими блоками земной коры – срединными массивами; Уральская, Кавказская, Северо-Тяньшанская системы). Складчатые системы состоят из отдельных синклинориев и антиклинориев. Синклинории - отрицательные структуры, испытавшие длительное погружение и интенсивную складчатость на завершающих этапах развития; характеризуются большими мощностями вулканогенных и осадочных пород, преобладанием тонкообломочных пород; зеркало складчатости имеет вогнутую форму. Антиклинории – положительные складчатые структуры, разделяющие синклинории и граничащие с ними по крупным разломам; свойственно преобладание положительных движений; меньшие мощности толщ, преимущественное распространение грубообломочного материала, складки имеют выпуклое зеркало складчатости. В свою очередь антиклинории и синклинории состоят из большого числа антиклиналей и синклиналей.

Судьба складчатых поясов после окончания их активного развития обычно заключалась в постепенном срезании их горного рельефа и складчато-надвиговых структур денудацией и смене орогенного режима более спокойным платформенным. В дальнейшем отдельные части поясов перекрываются осадочным чехлом и превращаются в плиты молодых платформ, как это произошло с северной, западносибирской, частью Урало-Охотского пояса и с северной периферией Средиземноморского пояса, ныне занятой Западно-Европейской, Скифской и Туранской плитами. Другие части пояса в новейшую тектоническую эпоху испытали повторное горообразование уже во внутриконтинентальных условиях; примеры – Урал, Тянь-Шань, Алтай и ряд других горных сооружений в Урало-Охотском и Средиземноморском поясах.

Эпиплатформенные орогены (внутриконтинентальные орогенные пояса) образуются на месте территорий, длительное время представлявших собой платформу, т.е. их формированию предшествовал платформенный этап развития, вследствие чего они получили название вторичных орогенов, процессы в результате которых возникли эти структуры называют тектонической активизацией платформ. Эпиплатформенные орогенные пояса обладают горным рельефом, высокой сейсмичностью, но низкой магматической активностью.

Различают три основных типа эпиплатформенных орогенов:

1. Структуры непоредственно примыкающие к складчатым поясам. Их образование связано с орогенезом в смежных складчатых поясах. Наиболее крупными представителями этих структур являются горные системы Алтая, Тянь-Шаня, Гиндукуша, Памира, Прибайкалья, Забайкалья, Тибетское нагорье, плато Колорадо, горный Крым;

2. Эпиплатформенные орогены, располагающиеся в пределах пассивных окраин континентов, такие как Аппалачи, Скандинавские горы и т.д. Предполагается, что они образовались в результате сжатия, источником которых были рифтовые зоны срединно-океанических хребтов;

3. Линейные поднятия в глубине платформ, вдали от складчатых поясов и океанов (внутриплатформенные вторичные орогены). Урал, Тиманский кряж, плато Путорана в Сибири, плато Декан на Индостане. Возникновение линейных орогенов связано со сжимающимися напряжениями вдоль древних швов внутри платформ, а изометричных – с выступами астеносферы и восходящими конвективными потоками мантии.

Континентальные рифты это системы сейсмически активных прогибов, возникших в результате растяжения и уплотнения литосферы, сопровождаемого на глубине выступами астеносферного слоя, что обусловило подъем повышенного теплового потока и активную магматическую деятельность. В своем большинстве континентальные рифты сформировались в неоген-четвертичное время на месте крупных сводовых поднятий континентальной земной коры. Образование рифтов можно отнести к процессам тектонической активности платформ. Активным рифтовым зонам континентов присущи ресчлененный рельеф, сейсмичность, вулканизм. Центральное положение в рифтовой зоне обычно занимает долина, шириной 40-50 км, ограниченная сбросами, нередко образующими ступенчатые системы. Тектонические блоки по краям рифта бывают приподняты до отметок 3.000 – 3.500 м и более. Протяженность континентальных рифтов составляет сотни и даже тысячи километров при ширине от нескольких километров до десятков и сотен километров. Наиболее известными представителями этих структур являются Восточно-Африканский пояс, Байкальский и Рейнский рифты. Древними аналогами рифтов являются авлакогены.

В пределах континентов платформы и складчатые пояса часто пересекаются глубинными разломами. Глубинный разлом – это региональная или планетарная структура разрыва земной коры, обладающая большой протяженностью и значительной глубиной залегания, с которой в течение длительного периода времени связаны интенсивные тектонические, магматические и метаморфические процессы. Глубинные разломы разделяют крупные блоки земной коры, различающиеся тектоническим режимом, структурой и историей развития.

Структурные элементы океанической земной коры. Самыми крупными и значимыми элементами океанского дна являются срединно-океанические хребты, океанские платформы и трансформные разломы.

Срединно-океанические хребты. Образуют планетарную систему общей протяженностью около 60 тыс. км., пересекающую все океаны и занимающую около 1/3 поверхности их дна. Океанская кора в пределах срединно-океанических хребтов имеет минимальную мощность, а местами и вовсе отсутствует; мощность литосферы обычно не превышает 30 км.

Срединно-океанические хребты на всем своем протяжении тектонически и вулканически активны, являются современными зонами спрединга, т.е. зонами расширения океанского дна и наращивания новообразованной океанической коры.

Следует отметить, что срединное положение эти структуры занимают в Атлантческом и Индийском океанах, в то время как в Тихом и Северном Ледовитом – сдвинуты к одной из границ этих океанов. Хребты воздымаются над ложем океана на 1-3 км, их ширина составляет от сотен до 2-3 тыс. км. Некоторые хребты или их отрезки, которые отличаются большей шириной (до 4 тыс. км) и пологими, относительно слабо расчлененными склонами, получили название срединно-океанических поднятий.

В строении СОХ выделяют осевые, гребневые и фланговые зоны.

Осевые зоны хребтов часто выражены узкими (ширина 20-30 км, глубина 1-2 км) центральными рифтовыми долинами, которые отличаются сейсмичностью и высоким тепловым потоком, представляя собой оси активного раздвига с трещинами растяжения, многочисленными центрами вулканических извержений и застывшими лавовыми озерами. Осевые части хребтов служат осевыми зонами выделения внутреннего тепла Земли, являются современными поясами сейсмичности и отвечают непосредственным границам литосферных плит, где происходит новообразование океанской коры.

Гребневые зоны хребтов располагаются по обе стороны рифтовых долин, имеют ширину 50-100 км и отличаются сильно расчлененным рельефом и блоковой тектоникой. Они разбиты продольными разломами на узкие блоки, приподнятые или опущенные относительно друг друга.

Фланговые зоны хребтов имеют наибольшую ширину и плавно понижаются в сторону океанического ложа. Практически асейсмичны.

Океанские платформы/плиты представляют собой крупные площадные структуры, занимающие обширные пространства между срединно-океаническими хребтами и подводными окраинами континентов. Отличаются относительно спокойной тектонической обстановкой, нормальным тепловым потоком и ограниченным проявлением вулканизма. Практически асейсмичны.

Рельеф океанических платформ представляет собой абиссальные равнины (абиссаль -) с осложняющими их поднятиями и хребтами. Некоторые абиссальные равнины, особенно в Атлантическом и Индийском океанах обладают почти идеально плоским рельефом, когда все неровности сглажены достаточно мощным слоем осадков, другие, преимущественно в Тихом океане, характеризуются холмистым рельефом, который отражает все неровности подстилающего базальтового слоя. Среди равнин возвышаются подводные вулканические горы, иногда выступающие над поверхностью океана в виде островов (например остров Реюньон в Индийском океане, Гавайские острова).

В качестве основных структурных элементов океанских платформ выступают котловины и разделяющие их внутренние поднятия.

Котловины обычно занимают пониженные участки абиссальных равнин. Глубина океана над ними составляет 4000 – 6000 м. Эти структуры обладают типичной океанской корой мощность 5-6 км. Примерами котловин могут служить Гвианская, Бразильская, Иберийская в Атлантическом океане; Северо-Западная, Наска, Кокосовая в Тихом океане.

Внутриплитные океанские поднятия которые разделяют котловины представленя крупными подводными возвышенностями и хребтами. Возвышенности имеют как правило овально-округлые очертания (бермудское поднятие в Атлантическом океане). Некоторые из них за плоский рельеф получили название плато. Внутриплитовые хребты являются отчетливыми линейными структурами, протягивающимися на тысячи километров. В отличие от СОХ они асейсмичны. Океанские поднятия воздымаются над смежными котловинами на 2-3 км и более, а их наиболее возвышенные участки образуют острова и целые архипелаги (Бермудские острова, острова Зеленого мыса). Подняти имеют утолщенную океаническую земную кору

Еще одним типом внутриплитных поднятий являются микроконтиненты с утоненной континентальной корой (до 25-30 км). Они характеризуются плоской, выровненной поверхностью рельефа, лежащей на глубине 2-3 км, и морфологически выражены подводными плато с островами в наиболее поднятых частях (Сейшельский архипелаг в Индийском океане).

Трансформные разломы – это разломы, расчленяющие СОХ на отдельные сегменты, смещенные относительно друг друга на сотни километров. В рельефе дна трансформные разломы выражены уступами, высотой более 1 км и вытянутыми вдоль них узкими ущельями глубиной до 1,5 км. Вдоль разломов наблюдается проявление вулканической деятельности. Наиболее крупные из трансформных разломов пересекают не только СОХ и абиссальные равнины, но могут продолжаться и в пределах смежных континентов (разлом Мендосино в Тихом океане). На пересечении СОХ трансформными разломами нередко возникают крупные вулканические постройки, нередко выступающие над поверхностью воды в виде островов (Азорские острова; о. Пасхи)