Чему равны значения числа пи. Кто открыл число Пи? История вычислений

Отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой (“пи” - начальная буква греческого слова , которое и означало “окружность”).

Архимед в сочинении “Измерение круга” вычислил отношение длины окружности к диаметру (число ) и нашел, что оно заключено между 3 10/71 и 3 1/7.

Долгое время в качестве приближенного значения использовали число 22/7, хотя уже в V веке в Китае было найдено приближение 355/113 = 3,1415929..., которое было открыто вновь в Европе лишь в XVI веке.

В Древней Индии считали равным = 3,1622….

Французский математик Ф. Виет вычислил в 1579 г. с 9 знаками.

Голландский математик Лудольф Ван Цейлен в 1596 г. публикует результат своего десятилетнего труда – число , вычисленное с 32 знаками.

Но все эти уточнения значения числа производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон. Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника – больше. Но при этом оставалась неясным, является ли число рациональным, т. е. отношением двух целых чисел, или иррациональным.

Лишь в 1767 г. немецкий математик И.Г. Ламберт доказал, что число иррационально.

А еще через сто с лишним лет в 1882 г. другой немецкий математик – Ф. Линдеман доказал его трансцендентность, что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.

Простейшее измерение

Начертим на плотном картоне окружность диаметра d (=15 см) , вырежем получившийся круг и обмотаем вокруг него тонкую нить. Измерив длину l (=46,5 см) одного полного оборота нити, разделим l на длину диаметра d окружности. Получившееся частное будет приближенным значением числа , т. е. = l / d = 46,5 см / 15 см = 3,1 . Данный довольно грубый способ дает в обычных условиях приближенное значение числа с точностью до 1.

Измерение с помощью взвешивания

На листе картона начертим квадрат. Впишем в него круг. Вырежем квадрат. Определим массу картонного квадрата с помощью школьных весов. Вырежем из квадрата круг. Взвесим и его. Зная массы квадрата m кв (=10 г) и вписанного в него круга m кр (=7,8 г) воспользуемся формулами

где p и h –соответственно плотность и толщина картона, S – площадь фигуры. Рассмотрим равенства:

Естественно, что в данном случае приближенное значение зависит от точности взвешивания. Если взвешиваемые картонные фигуры будут довольно большими, то возможно даже на обычных весах получить такие значения масс, которые обеспечат приближение числа с точностью до 0,1.

Суммирование площадей прямоугольников, вписанных в полукруг

Рисунок 1

Пусть А (a; 0), В (b; 0). Опишем на АВ полуокружность как на диаметре. Разделим отрезок АВ на n равных частей точками x 1 , x 2 , ..., x n-1 и восстановим из них перпендикуляры до пересечения с полуокружностью. Длина каждого такого перпендикуляра – это значение функции f(x)= . Из рисунка 1 ясно, что площадь S полукруга можно вычислить по формуле

S = (b – a) ((f(x 0) + f(x 1) + … + f(x n-1)) / n.

В нашем случае b=1, a=-1 . Тогда = 2 S .

Значения будут тем точнее, чем больше точек деления будет на отрезке АВ. Облегчить однообразную вычислительную работу поможет компьютер, для которого ниже приводится программа 1, составленная на Бейсике.

Программа 1

REM "Вычисление пи"
REM "Метод прямоугольников"
INPUT "Введите число прямоугольников", n
dx = 1 / n
FOR i = 0 TO n - 1
f = SQR(1 - x ^ 2)
x = x + dx
a = a + f
NEXT i
p = 4 * dx * a
PRINT "Значение пи равно ", p
END

Программа была набрана и запущена при различных значениях параметра n . Полученные значения числа записаны в таблице:

Метод Монте-Карло

Это фактически метод статистических испытаний. Свое экзотическое название он получил от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами. Дело в том, что метод требует применения случайных чисел, а одним из простейших приборов, генерирующих случайные числа, может служить рулетка. Впрочем, можно получить случайные числа и при помощи …дождя.

Для опыта приготовим кусок картона, нарисуем на нем квадрат и впишем в квадрат четверть круга. Если такой чертеж некоторое время подержать под дождем, то на его поверхности останутся следы капель. Подсчитаем число следов внутри квадрата и внутри четверти круга. Очевидно, что их отношение будет приближенно равно отношению площадей этих фигур, так как попадание капель в различные места чертежа равновероятно. Пусть N кр – число капель в круге, N кв – число капель в квадрате, тогда

4 N кр / N кв.

Рисунок 2

Дождь можно заменить таблицей случайных чисел, которая составляется с помощью компьютера по специальной программе. Каждому следу капли поставим в соответствие два случайных числа, характеризующих его положение вдоль осей Ох и Оу . Случайные числа можно выбрать из таблицы в любом порядке, например, подряд. Пусть первое четырехзначное число в таблице 3265 . Из него можно приготовить пару чисел, каждое из которых больше нуля и меньше единицы: х=0,32, у=0,65 . Эти числа будем считать координатами капли, т. е. капля как будто попала в точку (0,32; 0,65). Аналогично поступаем и со всеми выбранными случайными числами. Если окажется, что для точки (х; у) выполняется неравенство, то, значит, она лежит вне круга. Если х + у = 1 , то точка лежит внутри круга.

Для подсчета значения снова воспользуемся формулой (1). Ошибка вычислений по этому методу, как правило, пропорциональна , где D – некоторая постоянная, а N –число испытаний. В нашем случае N = N кв. Из этой формулы видно: для того чтобы уменьшить ошибку в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N, т. е. объем работы, в 100 раз. Ясно, что применение метода Монте-Карло стало возможным только благодаря компьютерам. Программа 2 реализует на компьютере описанный метод.

Программа 2

REM "Вычисление пи"
REM "Метод Монте-Карло "
INPUT "Введите число капель ", n
m = 0
FOR i = 1 TO n
t = INT(RND(1) * 10000)
x = INT(t \ 100)
y = t - x * 100
IF x ^ 2 + y ^ 2 < 10000 THEN m = m + 1
NEXT i
p = 4 * m / n

END

Программа была набрана и запущена при различных значениях параметра n. Полученные значения числа записаны в таблице:

n
n

Метод “падающей иголки”

Возьмем обыкновенную швейную иголку и лист бумаги. На листе проведем несколько параллельных прямых так, чтобы расстояния между ними были равны и превышали длину иголки. Чертеж должен быть достаточно большим, чтобы случайно брошенная игла не упала за его пределами. Введем обозначения: а - расстояние между прямыми, l – длина иглы.

Рисунок 3

Положение случайным образом брошенной на чертеж иглы (см. рис. 3) определяется расстоянием Х от ее середины до ближайшей прямой и углом j , которой игла образует с перпендикуляром, опущенным из середины иглы на ближайшую прямую (см. рис. 4). Ясно, что

Рисунок 4

На рис. 5 изобразим графически функцию y=0,5 cos . Всевозможные расположения иглы характеризуются точками с координатами (; у ) , расположенными на участке ABCD. Закрашенный участок AED – это точки, которые соответствуют случаю пересечения иглы с прямой. Вероятность события a – “игла пересекла прямую” – вычисляется по формуле:

Рисунок 5

Вероятность p(a) можно приблизительно определить многократным бросанием иглы. Пусть иглу бросали на чертеж c раз и p раз она упала, пересекая одну из прямых, тогда при достаточно большом c имеем p(a) = p / c . Отсюда = 2 l с / a k.

Замечание. Изложенный метод представляет собой вариацию метода статистических испытаний. Он интересен с дидактической точки зрения, так как помогает совместить простой опыт с составлением довольно сложной математической модели.

Вычисление с помощью ряда Тейлора

Обратимся к рассмотрению произвольной функции f(х). Предположим, что для нее в точке x 0 существуют производные всех порядков до n -го включительно. Тогда для функции f(х) можно записать ряд Тейлора:

Вычисления с помощью этого ряда будут тем точнее, чем больше членов ряда будет задействовано. Реализовать данный способ, конечно, лучше всего на компьютере, для чего можно воспользоваться программой 3.

Программа 3

REM "Вычисление пи"
REM "Разложение в ряд Тейлора "
INPUT n
a = 1
FOR i = 1 TO n
d = 1 / (i + 2)
f = (-1) ^ i * d
a = a + f
NEXT i
p = 4 * a
PRINT "значение пи равно"; p
END

Программа была набрана и запущена при различных значениях параметра n . Полученные значения числа записаны в таблице:

Есть очень простые мнемонические правила для запоминания значения числа :

Математики, празднующие свой день рождения 14 марта, с некоторых пор получили дополнительный повод для торжества: именно этот день (который, исходя из американской традиции, записывается, как 3.14) объявлен Международным днем числа Пи — математической постоянной, выражающей соотношение длины окружности и длины ее диаметра: 3, 14159265358979323846 2643383279...

Проблема отношения длины окружности к ее диаметру возникла очень давно (по легенде, именно недостаточная точность этого числа стала причиной того, что Вавилонская башня так и не была построена) и долгое время древние ученые пользовались числом, равным трем. Однако первым, кто использовал средства математики для получения числа этого соотношения, был Архимед , который, занимаясь окружностями и многоугольниками, предположил, что «отношение любой окружности к ее диаметру меньше 3 1/7 и больше 3 10/71», получив, таким образом, число 3,1419...

Кстати, настоящие фанаты этого числа (а есть и такие!) отмечают свой праздник ровно в 1 час 59 минут и 26 секунд — по минимальному количеству цифр этого числа: 3,1415926...

Индийские ученые обнаружили несколько иное значение — 3,162..., а арабскому математику и астроному Масуду ал-Каши удалось вычислить 16 абсолютно точных цифр числа пи, благодаря чему был произведен переворот в астрономии. К слову, пресловутое соотношение длины окружности и ее диаметра получило всем известный современный символ пи с легкой руки английского математика У. Джонсона только в 1706 году. Это обозначение — своеобразная аббревиатура букв, с которых начинаются греческие слова «окружность» и «периметр». В XYII веке немецкий математик Лудольф Ван Цейлен, опираясь на метод Архимеда, в течение десяти лет пытался получить число пи до тридцать второго знака после запятой, и его упорство было вознаграждено тем, что число пи с этим количеством десятичных знаков называют «числом Лудольфа».

Благодаря этому легендарному числу был завершен один из самых длительных математических споров: получено доказательство невозможности решения самой известной классической задачи о квадратуре круга. Математики А. Лажандр и Ф.Линдеман получили подтверждение иррациональности (невозможности быть представленным в виде дроби, числитель которой — целое, а знаменатель — натуральное число) и трансцендентности (невычислимости с помощью простых уравнений) числа пи, из чего следует, что никому не под силу с помощью только лишь циркуля и линейки построить отрезок, длина которого была бы равна длине заданной окружности.

Усовершенствование математических методов позволило ученым позднего времени с еще большей точностью вычислить число пи. Эйлер, благодаря которому название этого числа стало общеупотребительным, «нашел» 153 верных десятичных знака, Шенкс — 527 и пр. Что говорить о современных математиках, которые с помощью компьютера легко вычислили сто миллиардов знаков после запятой! Японские ученые, получив число пи с точностью до 12411-триллионного знака, сразу же оказались в Книге рекордов Гиннеса: для того, чтобы установить этот рекорд им понадобился не только супермощный компьютер, но и 400 часов времени! Поскольку число пи — бесконечная математическая продолжительность, у каждого математика есть шанс побить японский рекорд.

Одной из особенностей числа пи является то, что числа в его десятичной части (следующей после запятой) не повторяются, что, по утверждению некоторых ученых, является свидетельством того, что число пи — это разумный (!) хаос, записанный цифрами. В результате этого любая последовательность цифр, которая только может возникнуть в нашей голове, может быть найдена в цифрах десятичной части числа пи.

Если кто-то думает, что вычисление бесконечных десятичных знаков этого числа — особое развлечение по-хорошему «сумасшедших» математиков, тот ошибается: от точности числа пи зависит точность не только земного, но и космического строительства.

Увлеченные математикой люди по всему миру ежегодно съедают по кусочку пирога четырнадцатого марта - ведь это день числа Пи, самого известного иррационального числа. Эта дата напрямую связана с числом, первые цифры которого 3,14. Пи - это соотношение длины окружности к диаметру. Так как оно иррациональное, записать его в виде дроби невозможно. Это бесконечно длинное число. Его обнаружили тысячи лет назад и с тех пор постоянно изучают, но остались ли у Пи какие-нибудь секреты? От древнего происхождения до неопределенного будущего вот несколько наиболее интересных фактов о числе Пи.

Запоминание Пи

Рекорд в запоминании цифр после запятой принадлежит Раджвиру Мине из Индии, которому удалось запомнить 70 000 цифр - он поставил рекорд двадцать первого марта 2015 года. До этого рекордсменом был Чао Лу из Китая, которому удалось запомнить 67 890 цифр - этот рекорд был поставлен в 2005-м. Неофициальным рекордсменом является Акира Харагучи, записавший на видео свое повторение 100 000 цифр в 2005-м и не так давно опубликовавший видео, где ему удается вспомнить 117 000 цифр. Официальным рекорд стал бы только в том случае, если бы это видео было записано в присутствии представителя книги рекордов Гиннеса, а без подтверждения он остается лишь впечатляющим фактом, но не считается достижением. Энтузиасты математики любят заучивать цифру Пи. Многие люди используют различные мнемонические техники, к примеру стихи, где количество букв в каждом слове совпадает с цифрами Пи. В каждом языке существуют свои варианты подобных фраз, которые помогают запомнить как первые несколько цифр, так и целую сотню.

Существует язык Пи

Увлеченные литературой математики изобрели диалект, в котором число букв во всех словах соответствует цифрам Пи в точном порядке. Писатель Майк Кит даже написал книгу Not a Wake, которая полностью создана на языке Пи. Энтузиасты такого творчества пишут свои произведения в полном соответствии количества букв значению цифр. Это не имеет никакого прикладного применения, но является достаточно распространенным и известным явлением в кругах увлеченных ученых.

Экспоненциальный рост

Пи - это бесконечное число, поэтому люди по определению не смогут никогда установить точные цифры этого числа. Однако количество цифр после запятой сильно увеличилось со времен первого использования Пи. Еще вавилоняне им пользовались, но им было достаточно дроби в три целых и одну восьмую. Китайцы и создатели Ветхого Завета и вовсе ограничивались тройкой. К 1665 году сэр Исаак Ньютон вычислил 16 цифр Пи. К 1719 году французский математик Том Фанте де Ланьи вычислил 127 цифр. Появление компьютеров радикальным образом улучшило знания человека о Пи. С 1949 года по 1967-й количество известных человеку цифр стремительно выросло с 2037 до 500 000. Не так давно Петер Труэб, ученый из Швейцарии, смог вычислить 2,24 триллиона цифр Пи! На это потребовалось 105 дней. Разумеется, это не предел. Вполне вероятно, что с развитием технологий будет возможно установить еще более точную цифру - так как Пи бесконечно, предела точности просто не существует, и ограничить ее могут лишь технические особенности вычислительной техники.

Вычисление Пи вручную

Если вы хотите найти число самостоятельно, вы можете использовать старомодную технику - вам потребуются линейка, банка и веревка, можно также использовать транспортир и карандаш. Минус использования банки в том, что она должна быть круглой, и точность будет определяться тем, насколько хорошо человек может наматывать веревку вокруг нее. Можно нарисовать окружность транспортиром, но и это требует навыков и точности, так как неровная окружность может серьезно исказить ваши измерения. Более точный метод предполагает использование геометрии. Разделите круг на множество сегментов, как пиццу на кусочки, а потом вычислите длину прямой линии, которая превратила бы каждый сегмент в равнобедренный треугольник. Сумма сторон даст приблизительное число Пи. Чем больше сегментов вы используете, тем более точным получится число. Разумеется, в своих вычислениях вы не сможете приблизиться к результатам компьютера, тем не менее эти простые опыты позволяют более детально понять, что вообще представляет собой число Пи и каким образом оно используется в математике.

Открытие Пи

Древние вавилоняне знали о существовании числа Пи уже четыре тысячи лет назад. Вавилонские таблички исчисляют Пи как 3,125, а в египетском математическом папирусе встречается число 3,1605. В Библии число Пи дается в устаревшей длине - в локтях, а греческий математик Архимед использовал для описания Пи теорему Пифагора, геометрическое соотношение длины сторон треугольника и площади фигур внутри и снаружи кругов. Таким образом, можно с уверенностью сказать, что Пи является одним из наиболее древних математических понятий, хоть точное название данного числа и появилось относительно недавно.

Новый взгляд на Пи

Еще до того, как число Пи стали соотносить с окружностями, у математиков уже было множество способов даже для наименования этого числа. К примеру, в старинных учебниках по математике можно найти фразу на латыни, которую можно грубо перевести как «количество, которое показывает длину, когда на него умножается диаметр». Иррациональное число прославилось тогда, когда швейцарский ученый Леонард Эйлер использовал его в своих трудах по тригонометрии в 1737 году. Тем не менее греческий символ для Пи все еще не использовали - это произошло только в книге менее известного математика Уильяма Джонса. Он использовал его уже в 1706 году, но это долго оставалось без внимания. Со временем ученые приняли такое наименование, и теперь это наиболее известная версия названия, хотя прежде его называли также лудольфовым числом.

Нормальное ли число Пи?

Число Пи определенно странное, но насколько оно подчиняется нормальным математическим законам? Ученые уже разрешили многие вопросы, связанные с этим иррациональным числом, но некоторые загадки остаются. К примеру, неизвестно, насколько часто используются все цифры - цифры от 0 до 9 должны использоваться в равной пропорции. Впрочем, по первым триллионам цифр статистика прослеживается, но из-за того, что число бесконечное, доказать точно ничего невозможно. Есть и другие проблемы, которые пока ускользают от ученых. Вполне возможно, что дальнейшее развитие науки поможет пролить на них свет, но на данный момент это остается за пределами человеческого интеллекта.

Пи звучит божественно

Ученые не могут ответить на некоторые вопросы о числе Пи, тем не менее с каждым годом они все лучше понимают его суть. Уже в восемнадцатом веке была доказана иррациональность этого числа. Кроме того, было доказано, что число является трансцендентным. Это означает, что нет определенной формулы, которая позволила бы подсчитать Пи с помощью рациональных чисел.

Недовольство числом Пи

Многие математики просто влюблены в Пи, но есть и те, кто считает, что у этих цифр нет особенной значимости. Кроме того, они уверяют, что число Тау, которое в два раза больше Пи, более удобное в использовании как иррациональное. Тау показывает связь длины окружности и радиуса, что, по мнению некоторых, представляет более логичный метод исчисления. Впрочем, однозначно определить что-либо в данном вопросе невозможно, и у одного и у другого числа всегда будут сторонники, оба метода имеют право на жизнь, так что это просто интересный факт, а не повод думать, что пользоваться числом Пи не стоит.

ЧИСЛО p – отношение длины окружности к ее диаметру, – величина постоянная и не зависит от размеров окружности. Число, выражающее это отношение, принято обозначать греческой буквой 241 (от «perijereia » – окружность, периферия). Это обозначение стало употребительным после работы Леонарда Эйлера , относящейся к 1736, однако впервые оно было употреблено Уильямом Джонсом (1675–1749) в 1706. Как и всякое иррациональное число, оно представляется бесконечной непериодической десятичной дробью:

p = 3,141592653589793238462643… Нужды практических расчетов, относящихся к окружностям и круглым телам, заставили уже в глубокой древности искать для 241 приближений с помощью рациональных чисел. Сведения о том, что окружность ровно втрое длиннее диаметра, находятся в клинописных табличках Древнего Междуречья. Такое же значение числа p есть и в тексте Библии: «И сделал литое из меди море, – от края до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (3 Цар. 7. 23). Так же считали и древние китайцы. Но уже во 2 тыс. до н.э. древние египтяне пользовались более точным значением числа 241, которое получается из формулы для площади круга диаметра d :

Этому правилу из 50-й задачи папируса Райнда соответствует значение 4(8/9) 2 » 3,1605. Папирус Райнда, найденный в 1858, назван так по имени его первого владельца, его переписал писец Ахмес около 1650 до н.э., автор же оригинала неизвестен, установлено только, что текст создавался во второй половине 19 в. до н.э. Хотя каким образом египтяне получили саму формулу, из контекста неясно. В так называемом Московском папирусе, который был переписан неким учеником между 1800 и 1600 до н.э. с более древнего текста, примерно 1900 до н.э., есть еще одна интересная задача о вычислении поверхности корзины «с отверстием 4½». Неизвестно, какой формы была корзина, но все исследователи сходятся во мнении, что и здесь для числа p берется то же самое приближенное значение 4(8/9) 2 .

Чтобы понять, каким образом древние ученые получили тот или иной результат, нужно попытаться решить задачу, используя только знания и приемы вычислений того времени. Именно так поступают исследователи старинных текстов, однако решения, которые им удается найти, вовсе не обязательно «те самые». Очень часто для одной задачи предлагается несколько вариантов решения, каждый может выбрать себе по вкусу, однако никто не может утверждать, что именно им пользовались в древности. Относительно площади круга кажется правдоподобной гипотеза А.Е.Раик, автора многочисленных книг по истории математики: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами и (рис. 1). В наших обозначениях вычисления будут выглядеть так: в первом приближении площадь круга S равна разности между площадью квадрата со стороной d и суммарной площадью четырех малых квадратов А со стороной d :

В пользу этой гипотезы свидетельствуют аналогичные вычисления в одной из задач Московского папируса, где предлагается сосчитать

С 6 в. до н.э. математика стремительно развивалась в Древней Греции. Именно древнегреческие геометры строго доказали, что длина окружности пропорциональна ее диаметру (l = 2 p R ; R – радиус окружности, l – ее длина), а площадь круга равна половине произведения длины окружности и радиуса:

S = ½ l R = p R 2 .

Эти доказательства приписывают Евдоксу Книдскому иАрхимеду .

В 3 в. до н.э. Архимед в сочинении Об измерении круга вычислил периметры вписанных в окружность и описанных около нее правильных многоугольников (рис. 2) – от 6- до 96-угольника. Таким образом он установил, что число p находится между 3 10/71 и 3 1/7, т.е. 3,14084 < p < 3,14285. Последнее значение до сих пор используется при расчетах, не требующих особой точности. Более точное приближение 3 17/120 (p » 3,14166) нашел знаменитый астроном, создатель тригонометрии Клавдий Птолемей (2 в.), но оно не вошло в употребление.

Индийцы и арабы полагали, что p = . Это значение приводит так же и индийский математик Брахмагупта (598 – ок. 660). В Китае ученые в 3 в. использовали значение 3 7/50, которое хуже приближения Архимеда, но во второй половине 5 в. Цзу Чун Чжи (ок. 430 – ок. 501) получил для p приближение 355/113 (p » 3,1415927). Оно осталось неизвестно европейцам и было вновь найдено нидерландским математиком Адрианом Антонисом только в 1585. Это приближение дает ошибку лишь в седьмом десятичном знаке.

Поиски более точного приближения p продолжались и в дальнейшем. Например, аль-Каши (первая половина 15 в.) в Трактате об окружности (1427) вычислил 17 десятичных знаков p . В Европе такое же значение было найдено в 1597 году. Для этого ему пришлось вычислять сторону правильного 800 335 168-угольника. Нидерландский ученый Лудольф Ван Цейлен (1540–1610) нашел для него 32 правильных десятичных знака (опубликовано посмертно в 1615), это приближение называется лудольфовым числом.

Число p появляется не только при решении геометрических задач. Со времени Ф.Виета (1540–1603) разыскание пределов некоторых арифметических последовательностей, составляемых по простым законам, приводило к тому же числу p . В связи с этим в определении числа p принимали участие почти все известные математики: Ф.Виет, Х.Гюйгенс , Дж.Валлис, Г.В.Лейбниц , Л.Эйлер . Они получали различные выражения для 241 в виде бесконечного произведения, суммы ряда, бесконечной дроби.

Например, в 1593 Ф.Виет (1540–1603) вывел формулу

В 1658 англичанин Уильям Броункер (1620–1684) нашел представление числа p в виде бесконечной непрерывной дроби

однако неизвестно, как он пришел к этому результату.

В 1665 Джон Валлис (1616–1703) доказал, что

Эта формула носит его имя. Для практического нахождения числа 241 она мало пригодна, но полезна в различных теоретических рассуждениях. В историю науки она вошла как один из первых примеров бесконечных произведений.

Готфрид Вильгельм Лейбниц (1646–1716) в 1673 установил следующую формулу:

выражающую число p /4 как сумму ряда. Однако этот ряд сходится очень медленно. Чтобы вычислить p с точностью до десяти знаков, потребовалось бы, как показал Исаак Ньютон, найти сумму 5 млрд чисел и затратить на это около тысячи лет непрерывной работы.

Лондонский математик Джон Мэчин (1680–1751) в 1706, применяя формулу

получил выражение

которая до сих пор считается одной из лучших для приближенного вычисления p . Чтобы найти те же десять точных десятичных знаков, потребуется всего несколько часов ручного счета. Сам Джон Мэчин вычислил p со 100 верными знаками.

C помощью того же ряда для arctg x и формулы

значение числа p было получено на ЭВМ с точностью до ста тысяч десятичных знаков. Такого рода вычисления представляют интерес в связи с понятием случайных и псевдослучайных чисел. Статистическая обработка упорядоченной совокупности указанного количества знаков p показывает, что она обладает многими чертами случайной последовательности.

Есть несколько забавных способов запомнить число p точнее, чем просто 3,14. Например, выучив следующее четверостишие, можно без труда назвать семь десятичных знаков p :

Нужно только постараться

И запомнить все как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть .

(С.Бобров Волшебный двурог )

Подсчет количества букв в каждом слове следующих фраз так же дает значение числа p :

«Что я знаю о кругах?» (p » 3,1416). Эту поговорку предложил Я.И.Перельман.

«Вот и знаю я число, именуемое Пи. – Молодец!» (p » 3,1415927).

«Учи и знай в числе известном за цифрой цифру, как удачу примечать» (p » 3,14159265359).

Учитель одной из московских школ придумал строку: «Это я знаю и помню прекрасно», а его ученица сочинила забавное продолжение: «Пи многие знаки мне лишни, напрасны». Это двустишие позволяет определить 12 цифр.

А так выглядит 101 знак числа p без округления

3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

В наше время с помощью ЭВМ значение числа p вычислено с миллионами правильных знаков, но такая точность не нужна ни в каких вычислениях. А вот возможность аналитического определения числа ,

В последней формуле в числителе стоят все простые числа, а знаменатели отличаются от них на единицу, причем знаменатель больше числителя, если тот имеет вид 4n + 1, и меньше в противном случае.

Хотя еще с конца 16 в., т.е. с тех пор, как сформировались сами понятия рациональных и иррациональных чисел, многие ученые были убеждены в том, что p – число иррациональное, но только в 1766 немецкий математик Иоганн Генрих Ламберт (1728–1777), основываясь на открытой Эйлером зависимости между показательной и тригонометрической функциями, строго доказал это. Число p не может быть представлено в виде простой дроби, как ни были бы велики числитель и знаменатель.

В 1882 профессор Мюнхенского университета Карл Луиз Фердинанд Линдеман (1852–1939) используя результаты, полученные французским математиком Ш.Эрмитом , доказал, что p – число трансцендентное, т.е. оно не является корнем никакого алгебраического уравнения a n x n + a n– 1 x n– 1 + … + a 1 x + a 0 = 0 с целыми коэффициентами. Это доказательство поставило точку в истории древнейшей математической задачи о квадратуре круга. Тысячелетия эта задача не поддавалась усилиям математиков, выражение «квадратура круга» стало синонимом неразрешимой проблемы. А все дело оказалось в трансцендентной природе числа p .

В память об этом открытии в зале перед математической аудиторией Мюнхенского университета был установлен бюст Линдемана. На постаменте под его именем изображен круг, пересеченный квадратом равной площади, внутри которого начертана буква p .

Марина Федосова

Чему равно число Пи мы знаем и помним со школы. Оно равно 3.1415926 и так далее… Обычному человеку достаточно знать, что это число получается, если разделить длину окружности на ее диаметр. Но многим известно, что число Пи возникает в неожиданных областях не только математики и геометрии, но и в физике. Ну а если вникнуть в подробности природы этого числа, то можно заметить много удивительного среди бесконечного ряда цифр. Возможно ли, что Пи скрывает самые сокровенные тайны Вселенной?

Бесконечное число

Само число Пи возникает в нашем мире как длина окружности, диаметр которой равен единице. Но, несмотря на то, что отрезок равный Пи вполне себе конечен, число Пи начинается, как 3.1415926 и уходит в бесконечность рядами цифр, которые никогда не повторяются. Первый удивительный факт состоит в том, что это число, используемое в геометрии, нельзя выразить в виде дроби из целых чисел. Иначе говоря, вы не сможете его записать отношением двух чисел a/b. Кроме этого число Пи трансцендентное. Это означает, что нет такого уравнения (многочлена) с целыми коэффициентами, решением которого было бы число Пи.

То, что число Пи трансцендентно, доказал в 1882 году немецкий математик фон Линдеман. Именно это доказательство стало ответом на вопрос, можно ли с помощью циркуля и линейки нарисовать квадрат, у которого площадь равна площади заданного круга. Эта задача известна как поиск квадратуры круга, волновавший человечество с древнейших времен. Казалось, что эта задача имеет простое решение и вот-вот будет раскрыта. Но именно непостижимое свойство числа Пи показало, что у задачи квадратуры круга решения не существует.

В течение как минимум четырех с половиной тысячелетий человечество пыталось получить все более точное значение числа Пи. Например, В Библии в Третьей Книги Царств (7:23) число Пи принимается равным 3.

Замечательное по точности значение Пи можно обнаружить в пирамидах Гизы: соотношение периметра и высоты пирамид составляет 22/7. Эта дробь дает приближенное значение Пи, равное 3.142… Если, конечно, египтяне не задали такое соотношение случайно. Это же значение уже применительно к расчету числа Пи получил в III веке до нашей эры великий Архимед.

В папирусе Ахмеса, древнеегипетском учебнике по математике, который датируется 1650 годом до нашей эры, число Пи рассчитано как 3.160493827.

В древнеиндийских текстах примерно IX века до нашей эры наиболее точное значение было выражено числом 339/108, которое равнялось 3,1388…

После Архимеда почти две тысячи лет люди пытались найти способы рассчитать число Пи. Среди них были как известные, так и неизвестные математики. Например, римский архитектор Марк Витрувий Поллион, египетский астроном Клавдий Птолемей, китайский математик Лю Хуэй, индийский мудрец Ариабхата, средневековый математик Леонардо Пизанский, известный как Фибоначчи, арабский ученый Аль-Хорезми, от чьего имени появилось слово «алгоритм». Все они и множество других людей искали наиболее точные методики расчета Пи, но вплоть до 15 века никогда не получали больше чем 10 цифр после запятой в связи со сложностью расчетов.

Наконец, в 1400 году индийский математик Мадхава из Сангамаграма рассчитал Пи с точностью до 13 знаков (хотя в двух последних все-таки ошибся).

Количество знаков

В 17 веке Лейбниц и Ньютон открыли анализ бесконечно малых величин, который позволил вычислять Пи более прогрессивно – через степенные ряды и интегралы. Сам Ньютон вычислил 16 знаков после запятой, но не упомянул это в своих книгах – об этом стало известно после его смерти. Ньютон утверждал, что занимался расчетом Пи исключительно от скуки.

Примерно в то же время подтянулись и другие менее известные математики, предложившие новые формулы расчета числа Пи через тригонометрические функции.

Например, вот по какой формуле рассчитывал Пи преподаватель астрономии Джон Мэчин в 1706 году: PI / 4 = 4arctg(1/5) – arctg(1/239). С помощью методов анализа Мэчин вывел из этой формулы число Пи с сотней знаков после запятой.

Кстати, в том же 1706 году число Пи получило официальное обозначение в виде греческой буквы: его в своем труде по математике использовал Уильям Джонс, взяв первую букву греческого слова «периферия», что означает «окружность». Родившийся в 1707 великий Леонард Эйлер популяризовал это обозначение, нынче известное любому школьнику.

До эры компьютеров математики занимались тем, чтобы рассчитать как можно больше знаков. В связи с этим порой возникали курьезы. Математик-любитель У. Шенкс в 1875 году рассчитал 707 знаков числа Пи. Эти семь сотен знаков увековечили на стене Дворца Открытий в Париже в 1937 году. Однако спустя девять лет наблюдательными математиками было обнаружено, что правильно вычислены лишь первые 527 знаков. Музею пришлось понести приличные расходы, чтобы исправить ошибку – сейчас все цифры верные.

Когда появились компьютеры, количество цифр числа Пи стало исчисляться совершенно невообразимыми порядками.

Один из первых электронных компьютеров ENIAC, созданный в 1946 году, имевший огромные размеры, и выделявший столько тепла, что помещение прогревалось до 50 градусов по Цельсию, вычислил первые 2037 знаков числа Пи. Этот расчет занял у машины 70 часов.

По мере совершенствования компьютеров наше знание числа Пи все дальше и дальше уходило в бесконечность. В 1958 году было рассчитано 10 тысяч знаков числа. В 1987 году японцы высчитали 10 013 395 знаков. В 2011 японский исследователь Сигеру Хондо превысил рубеж в 10 триллионов знаков.

Где еще можно встретить Пи?

Итак, зачастую наши знания о числе Пи остаются на школьном уровне, и мы точно знаем, что это число незаменимо в первую очередь в геометрии.

Помимо формул длины и площади окружности число Пи используется в формулах эллипсов, сфер, конусов, цилиндров, эллипсоидов и так далее: где-то формулы простые и легко запоминающиеся, а где-то содержат очень сложные интегралы.

Затем мы можем встретить число Пи в математических формулах, там, где, на первый взгляд геометрии и не видно. Например, неопределенный интеграл от 1/(1-x^2) равен Пи.

Пи часто используется в анализе рядов. Для примера приведем простой ряд, который сходится к числу Пи:

1/1 – 1/3 + 1/5 – 1/7 + 1/9 — …. = PI/4

Среди рядов число Пи наиболее неожиданно появляется в известной дзета-функции Римана. Рассказать про нее в двух словах не получится, скажем лишь, что когда-нибудь число Пи поможет найти формулу расчета простых чисел.

И совершенно удивительно: Пи появляется в двух самых красивых «королевских» формулах математики – формуле Стирлинга (которая помогает найти приблизительное значение факториала и гамма-функции) и формуле Эйлера (которая связывает аж целых пять математических констант).

Однако самое неожиданное открытие ожидало математиков в теории вероятности. Там тоже присутствует число Пи.

Например, вероятность того, что два числа окажутся взаимно простыми, равна 6/PI^2.

Пи появляется в задаче Бюффона о бросании иглы, сформулированной в 18 веке: какова вероятность того, что брошенная на расчерченный лист бумаги игла пересечет одну из линий. Если длина иглы L, а расстояние между линиями L, и r > L то мы можем приблизительно рассчитать значение числа Пи по формуле вероятности 2L/rPI. Только представьте – мы можем получить Пи из случайных событий. И между прочим Пи присутствует в нормальном распределении вероятностей, появляется в уравнении знаменитой кривой Гаусса. Значит ли это, что число Пи еще более фундаментально, чем просто отношение длины окружности к диаметру?

Мы можем встретить Пи и в физике. Пи появляется в законе Кулона, который описывает силу взаимодействия между двумя зарядами, в третьем законе Кеплера, который показывает период обращения планеты вокруг Солнца, встречается даже в расположении электронных орбиталей атома водорода. И что опять же самое невероятное – число Пи прячется в формуле принципа неопределенности Гейзенберга – фундаментального закона квантовой физики.

Тайны числа Пи

В романе Карла Сагана «Контакт», по которому снят одноименный фильм, инопланетяне сообщают героине, что среди знаков Пи содержится тайное послание от Бога. С некоторой позиции цифры в числе перестают быть случайными и представляют себе код, в котором записаны все секреты Мироздания.

Этот роман на самом деле отразил загадку, занимающую умы математиков всей планеты: является ли число Пи нормальным числом, в котором цифры разбросаны с одинаковой частотой, или с этим числом что-то не так. И хотя ученые склоняются к первому варианту (но не могут доказать), число Пи выглядит очень загадочно. Один японец как то подсчитал, сколько раз встречаются числа от 0 до 9 в первом триллионе знаков Пи. И увидел, что числа 2, 4 и 8 встречаются чаще, чем остальные. Это может быть одним из намеков на то, что Пи не совсем нормальное, и цифры в нем действительно не случайны.

Вспомним всё, что мы прочли выше, и спросим себя, какое еще иррациональное и трансцендентное число так часто встречается в реальном мире?

А в запасе имеются еще странности. Например, сумма первых двадцати цифр Пи равна 20, а сумма первых 144 цифр равна «числу зверя» 666.

Главный герой американского сериала «Подозреваемый» профессор Финч рассказывал студентам, что в силу бесконечности числа Пи в нем могут встретиться любые комбинации цифр, начиная от цифр даты вашего рождения до более сложных чисел. Например, на 762-ой позиции находится последовательность из шести девяток. Эта позиция называется точкой Фейнмана в честь известного физика, который заметил это интересное сочетание.

Нам известно также, что число Пи содержит последовательность 0123456789, но находится она на 17 387 594 880-й цифре.

Все это означает, что в бесконечности числа Пи можно обнаружить не только интересные сочетания цифр, но и закодированный текст «Войны и Мира», Библии и даже Главную Тайну Мироздания, если таковая существует.

Кстати, о Библии. Известный популяризатор математики Мартин Гарднер в 1966 году заявил, что миллионным знаком числа Пи (на тот момент еще неизвестным) будет число 5. Свои расчеты он объяснил тем, что в англоязычной версии Библии, в 3-й книге, 14-й главе, 16-м стихе (3-14-16) седьмое слово содержит пять букв. Миллионную цифру получили спустя восемь лет. Это было число пять.

Стоит ли после этого утверждать, что число Пи случайно?