Корни всех чисел. Как высчитать квадратный корень из числа без помощи калькулятора

В предисловии к своему первому изданию “В царстве смекалки” (1908 год) Е. И. Игнатьев пишет: “... умственную самодеятельность, сообразительность и “смекалку” нельзя ни “вдолбить”, ни “вложить” ни в чью голову. Результаты надёжны лишь тогда, когда введение в область математических знаний совершается в лёгкой и приятной форме, на предметах и примерах обыденной и повседневной обстановки, подобранных с надлежащим остроумием и занимательностью”.

В предисловии к изданию 1911 г “Роль памяти в математике” Е.И. Игнатьев пишет “… в математике следует помнить не формулы, а процесс мышления”.

Для извлечения квадратного корня существуют таблицы квадратов для двухзначных чисел, можно разложить число на простые множители и извлечь квадратный корень из произведения. Таблицы квадратов бывает недостаточно, извлечение корня разложением на множители - трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2*2*52441. Методом проб и ошибок, подбором – это, конечно, можно сделать, если быть уверенным в том, что это целое число. Способ, который я хочу предложить, позволяет извлечь квадратный корень в любом случае.

Когда-то в институте (Пермский государственный педагогический институт) нас познакомили с этим способом, о котором сейчас хочу рассказать. Никогда не задумывалась, есть ли у этого способа доказательство, поэтому сейчас пришлось некоторые доказательства выводить самой.

Основой этого способа, является состав числа =.

=&, т.е. & 2 =596334.

1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)

2. Извлекаем квадратный корень из первой слева группы ( - число 2). Так мы получаем первую цифру числа &.

3. Находим квадрат первой цифры (2 2 =4).

4. Находим разность первой группы и квадрата первой цифры (5-4=1).

5.Сносим следующие две цифры (получили число 196).

6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).

7.Теперь необходимо найти вторую цифру числа &: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &.

8. Находим разность (196-176=20).

9. Сносим следующую группу (получаем число 2033).

10. Удваиваем число 24, получаем 48.

11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа &.

Доказательство приведено мной для случаев:

1. Извлечение квадратного корня из трехзначного числа;

2. Извлечение квадратного корня из четырехзначного числа.

Приближенные методы извлечения квадратного корня (без использования калькулятора) .

1.Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 ?х), и пользовались формулой . (1)

Извлечем с помощью формулы (1) корень квадратный, например из числа 28:

Результат извлечения корня из 28 с помощью МК 5,2915026.

Как видим способ вавилонян дает хорошее приближение к точному значению корня.

2. Исаак Ньютон разработал метод извлечения квадратного корня, который восходил еще к Герону Александрийскому (около 100 г. н.э.). Метод этот (известный как метод Ньютона) заключается в следующем.

Пусть а 1 - первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа - точного квадрата, не превосходящего х) .

Следующее, более точное приближение а 2 числа найдется по формуле .

На кружке показала, как в столбик можно извлекать квадратные корни. Вычислить корень можно с произвольной точностью, найти сколько угодно цифр в его десятичной записи, даже если он получается иррациональным. Алгоритм запомнился, а вопросы остались. Непонятно было, откуда взялся метод и почему он дает верный результат. В книжках этого не было, а может, просто не в тех книжках искала. В итоге, как и многое из того, что на сегодняшний день знаю и умею, вывела сама. Делюсь своим знанием здесь. Кстати сказать, до сих пор не знаю, где приведено обоснование алгоритма)))

Итак, сначала на примере рассказываю, “как работает система”, а потом объясняю, почему она на самом деле работает.

Возьмем число (число взято “с потолка”, только что в голову пришло).

1. Разбиваем его цифры на пары: те, что стоят слева от десятичной запятой, группируем по две справа налево, а те, что правее – по две слева направо. Получаем .

2. Извлекаем квадратный корень из первой группы цифр слева — в нашем случае это (ясно, что точно корень может не извлекаться, берем число, квадрат которого максимально близок к нашему числу, образованному первой группой цифр, но не превосходит его). В нашем случае это будет число . Записываем в ответ — это старшая цифра корня.

3. Возводим число, которое стоит уже в ответе — это — в квадрат и вычитаем из первой слева группы цифр — из числа . В нашем случае остается .

4. Приписываем справа следующую группу из двух цифр: . Число , которое уже стоит в ответе, умножаем на , получаем .

5. Теперь следите внимательно. Нам нужно к числу справа приписать одну цифру , и число умножить на , то есть на ту же самую приписанную цифру. Результат должен быть как можно ближе к , но опять-таки не больше этого числа. В нашем случае это будет цифра , ее записываем в ответ рядом с , справа. Это следующая цифра в десятичной записи нашего квадратного корня.

6. Из вычитаем произведение , получаем .

7. Далее повторяем знакомые операции: приписываем к справа следующую группу цифр , умножаем на , к полученному числу > приписываем справа одну цифру, такую, чтобы при умножении на нее получилось число, меньшее , но наиболее близкое к нему –– это цифра –– следующая цифра в десятичной записи корня.

Вычисления запишутся следующим образом:

А теперь обещанное объяснение. Алгоритм основан на формуле

Комментариев: 50

  1. 2 Антон:

    Слишком сумбурно и запутано. Разложите всё по пунктам и пронумеруйте их. Плюс: объясните откуда в каждом действии мы подставляем нужные значения. Никогда раньше не вычислял корень в столбик – разобрался с трудом.

  2. 5 Юлия:

  3. 6 :

    Юлия, 23 на данный момент записано справа, это две первые (слева) уже полученные цифры корня, стоящие в ответе. Умножаем на 2 согласно алгоритму. Повторяем действия, описанные в пункте 4.

  4. 7 zzz:

    ошибка в “6. Из 167 вычитаем произведение 43 * 3 = 123 (129 нада), получаем 38.”
    непонятно как после запятой получилось 08…

  5. 9 Федотов Александр:

    А ещё в докалькуляторную эпоху нас в школе учили не только квадратный, но и кубический корень в столбик извлекать, но это более нудная и кропотливая работа. Проще было таблицами Брадиса воспользоваться или логарифмической линейкой, которую мы уже в старших классах изучали.

  6. 10 :

    Александр, Вы правы, можно извлекать в столбик и корни больших степеней. Я собираюсь написать как раз о том, как находить кубический корень.

  7. 12 Сергей Валентинович:

    Уважаемая Елизавета Александровна! Мной в конце 70-х разработана схема автоматического (т.е. не подбором) вычисления квадр. корня на арифмометре “Феликс”. Если заинтересуетесь, могу выслать описание.

  8. 14 Vlad aus Engelsstadt:

    (((Извлечение квадратного корня в столбик)))
    Алгоритм упрощается, если использовать 2-ную систему счисления, которую изучают в информатике, но полезно и в математике. А.Н. Колмогоров в популярных лекциях для школьников приводил этот алгоритм. Его статью можно найти в “Чебышёвском сборнике” (Математический журнал, ищите ссылку на него в интернете)
    К случаю сказать:
    Г.Лейбниц в свое время носился с идеей о переходе от 10-ной системы счисления к двоичной из-за ее простоты и доступности для начинающих (младших школьников). Но устоявшиеся традиции ломать это все равно что лбом ломать крепостные ворота: можно, но бесполезно. Вот и получается как по наиболее цитируемому в былые времена бородатому философу: традиции всех мертвых поколений подавляют сознание живых.

    До следующих встреч.

  9. 15 Vlad aus Engelsstadt:

    ))Сергей Валентинович, да, мне интересно…((

    Бьюсь об заклад, что это вариация под “Феликс” Вавилонского метода извлечения коня квадратного методом последовательных приближений. Этот алгоритм был перекрыт методом Ньютона (метод касательных)

    Интересно, не ошибся ли я в прогнозе?

  10. 18 :

    2Vlad aus Engelsstadt

    Да, алгоритм в двоичной системе должен быть проще, это довольно очевидно.

    О методе Ньютона. Может, оно и так, но все равно интересно

  11. 20 Кирилл:

    Спасибо большое. А алгоритма так и нету, неизвестно откуда он взялся, но результат правильный получается. СПАСИБО БОЛЬШОЕ! Долго искал это)

  12. 21 Александр:

    А каким образом пойдёт извлечение корня из числа, где вторая слева-направо группа весьма мала? к примеру, любимое всеми число 4 398 046 511 104 . после первого вычитания не получается продолжить всё по алгоритму. Объясните пожалуйста.

  13. 22 Алексей:

    Да, знаю этот способ. Я, помню, вычитал его в книге “Алгебра” какого-то старого издания. Тогда еще по аналогии сам вывел, как так же в столбик извлекать кубический корень. Но там уже сложнее: каждая цифра определяется уже не в одно (как для квадратного), а в два вычитания, да еще там каждый раз надо перемножать длинные числа.

  14. 23 Артем:

    В примере извлечения квадратного корня в столбик из 56789,321 имеются опечатки. Группа цифр 32 приписана дважды к числам 145 и 243, в числе 2388025 вторую 8 необходимо заменить на 3. Тогда последнее вычитание следует записать так: 2431000 – 2383025 = 47975.
    Дополнительно, при делении остатка на увеличенное в два раза значение ответа (без учета запятой), получим добавочное количество значащих цифр (47975/(2*238305) = 0.100658819…), которые следует дописать к ответу (√56789,321 = 238,305… = 238,305100659).

  15. 24 Сергей:

    По всей видимости алгоритм пришел из книги Исаака Ньютона “Всеобщая арифметика или книга о арифметических синтезе и анализе”. Вот выдержка из неё:

    ОБ ИЗВЛЕЧЕНИИ КОРНЕЙ

    Чтобы извлечь из числа квадратный корень, прежде всего следует поставить над его цифрами через одну, начиная с единиц, точки. Затем следует в частном или в корне написать цифру, квадрат которой равен или ближайший по недостатку к цифрам или цифре, предшествующим первой точке. После вычитания этого квадрата остальные цифры корня будут последовательно найдены посредством деления остатка на удвоенную величину уже извлеченной части корня и вычитания всякий раз из остатка квадрата последней найденной цифры и ее удесятеренного произведения на названный делитель.

  16. 25 Сергей:

    Поправьте ещё название книги “Всеобщая арифметика или книга оБ арифметических синтезе и анализе”

  17. 26 Александр:

    Спасибо за интересный материал. Но мне этот метод представляется несколько более сложным, чем нужно, например, школьнику. Я применяю более просто метод, основанный на разложении квадратичной функции с помощью первых двух производных. Формула его такая:
    sqrt(x)= A1+A2-A3, где
    А1 – целое число, квадрат которого ближе всего к х;
    А2 – дробь, в числителе х-А1, в знаменателе 2*А1.
    Для большинства чисел, встречающихся в школьном курсе, этого достаточно, чтобы получить результат с точностью до сотых.
    Если нужен более точный результат, берем
    А3 – дробь, в числителе А2 в квадрате, в знаменателе 2*А1+1.
    Конечно, для применения нужна таблица квадратов целых чисел, но это в школе не проблема. Запомнить эту формулу достаточно просто.
    Меня, правда, смущает, что А3 я получил опытным путем в результате экспериментов с электронной таблицей и не вполне понимаю, почему этот член имеет такой вид. Может, подскажете?

  18. 27 Александр:

    Да, я тоже рассматривал эти соображения, но дьявол кроется в деталях. Вы пишете:
    “поскольку a2 и b отличаются уже довольно мало”. Вопрос именно стоит, насколько мало.
    Эта формула хорошо работает на числах второго десятка и гораздо хуже (не до сотых, только до десятых) на числах первого десятка. Почему так происходит уже трудно понять без привлечения производных.

  19. 28 Александр:

    Я уточню, в чем я вижу преимущество предложенной мной формулы. Она не требует не вполне естественного разбиения чисел на пары цифр, которое, как показывает опыт, часто выполняется с ошибками. Смысл ее очевиден, а для человека, знакомого с анализом, тривиален. Хорошо работает на числах от 100 до 1000, наиболее часто встречающихся в школе.

  20. 29 Александр:

    Кстати, я немного покопался и нашел точное выражение для А3 в моей формуле:
    А3= А22 /2(A1+A2)

  21. 30 vasil stryzhak:

    В наше время, повсеместного использования вычислительной техники, вопрос извлечения квадратного коня из числа с практической точки зрения не стоит. Но для любителей математики, несомненно, представляют интерес различные варианты решения данной задачи. В школьной программе способ данного вычисления без привлечения дополнительных средств должен иметь место наравне с умножением и делением в столбик. Алгоритм вычисления должен быть не только запоминаемым, но и понятным. Классический метод, предоставленный в данном материале для обсуждения с раскрытием сущности, в полной мере соответствует вышеназванным критериям.
    Существенным недостатком предлагаемого Александром способа является использование таблицы квадратов целых чисел. Каким большинством чисел встречающихся в школьном курсе она ограничена автор умалчивает. Что касается формулы, то в целом она мне импонирует в виду относительно высокой точностью вычисления.

  22. 31 Александр:

    для 30 vasil stryzhak
    Я ни о чем не умолчал. Таблица квадратов предполагается до 1000. В мое время в школе ее просто заучивали наизусть и она была во всех учебниках математики. Я в явном виде назвал этот интервал.
    Что до вычислительной техники, то она не применяется, в основном, на уроках математики, если только не идет специально тема применения калькулятора. Калькуляторы сейчас встроены в устройства, запрещенные к применению на ЕГЭ.

  23. 32 vasil stryzhak:

    Александр, спасибо за разъяснение!Я считал,что для предлагаемого метода теоретически необходимо помнить или пользоваться таблицей квадратов всех двузначных чисел.Тогда для подкоренных чисел не входящих в интервал от 100 до 10000 можно использовать прием их увеличения или уменьшения на необходимое количество порядков переносом запятой.

  24. 33 vasil stryzhak:

  25. 39 АЛЕКСАНДР:

    МОЯ ПЕРВАЯ ПРОГРАММА НА ЯЗЫКЕ “ЯМБ” НА СОВЕТСКОЙ МАШИНЕ “ИСКРА 555″ БЫЛА НАПИСАНА ДЛЯ ИЗВЛЕЧЕНИЯ КВАДРАТНОГО КОРНЯ ИЗ ЧИСЛА ПО АЛГОРИТМУ ИЗВЛЕЧЕНИЯ В СТОЛБИК! а сейчас забыл как извлекать в ручную!

При решении различных задач из курса математики и физики ученики и студенты часто сталкиваются с необходимостью извлечения корней второй, третьей или n-ой степени. Конечно, в век информационных технологий не составит труда решить такую задачу при помощи калькулятора. Однако возникают ситуации, когда воспользоваться электронным помощником невозможно.

К примеру, на многие экзамены запрещено приносить электронику. Кроме того, калькулятора может не оказаться под рукой. В таких случаях полезно знать хотя бы некоторые методы вычисления радикалов вручную.

Один из простейших способов вычисления корней заключается в использовании специальной таблицы . Что же она собой представляет и как ей правильно воспользоваться?

При помощи таблицы можно найти квадрат любого числа от 10 до 99. При этом в строках таблицы находятся значения десятков, в столбах - значения единиц. Ячейка на пересечении строки и столбца содержит в себе квадрат двузначного числа. Для того чтобы вычислить квадрат 63, нужно найти строку со значением 6 и столбец со значением 3. На пересечении обнаружим ячейку с числом 3969.

Поскольку извлечение корня - это операция, обратная возведению в квадрат, для выполнения этого действия необходимо поступить наоборот: вначале найти ячейку с числом, радикал которого нужно посчитать, затем по значениям столбика и строки определить ответ. В качестве примера рассмотрим вычисление квадратного корня 169.

Находим ячейку с этим числом в таблице, по горизонтали определяем десятки - 1, по вертикали находим единицы - 3. Ответ: √169 = 13.

Аналогично можно вычислять корни кубической и n-ой степени, используя соответствующие таблицы.

Преимуществом способа является его простота и отсутствие дополнительных вычислений. Недостатки же очевидны: метод можно использовать только для ограниченного диапазона чисел (число, для которого находится корень, должно быть в промежутке от 100 до 9801). Кроме того, он не подойдёт, если заданного числа нет в таблице.

Разложение на простые множители

Если таблица квадратов отсутствует под рукой или с её помощью оказалось невозможно найти корень, можно попробовать разложить число, находящееся под корнем, на простые множители . Простые множители - это такие, которые могут нацело (без остатка) делиться только на себя или на единицу. Примерами могут быть 2, 3, 5, 7, 11, 13 и т. д.

Рассмотрим вычисление корня на примере √576. Разложим его на простые множители. Получим следующий результат: √576 = √(2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3) = √(2 ∙ 2 ∙ 2)² ∙ √3². При помощи основного свойства корней √a² = a избавимся от корней и квадратов, после чего подсчитаем ответ: 2 ∙ 2 ∙ 2 ∙ 3 = 24.

Что же делать, если у какого-либо из множителей нет своей пары? Для примера рассмотрим вычисление √54. После разложения на множители получаем результат в следующем виде: √54 = √(2 ∙ 3 ∙ 3 ∙ 3) = √3² ∙ √(2 ∙ 3) = 3√6. Неизвлекаемую часть можно оставить под корнем. Для большинства задач по геометрии и алгебре такой ответ будет засчитан в качестве окончательного. Но если есть необходимость вычислить приближённые значения, можно использовать методы, которые будут рассмотрены далее.

Метод Герона

Как поступить, когда необходимо хотя бы приблизительно знать, чему равен извлечённый корень (если невозможно получить целое значение)? Быстрый и довольно точный результат даёт применение метода Герона . Его суть заключается в использовании приближённой формулы:

√R = √a + (R - a) / 2√a,

где R - число, корень которого нужно вычислить, a - ближайшее число, значение корня которого известно.

Рассмотрим, как работает метод на практике, и оценим, насколько он точен. Рассчитаем, чему равен √111. Ближайшее к 111 число, корень которого известен - 121. Таким образом, R = 111, a = 121. Подставим значения в формулу:

√111 = √121 + (111 - 121) / 2 ∙ √121 = 11 - 10 / 22 ≈ 10,55.

Теперь проверим точность метода :

10,55² = 111,3025.

Погрешность метода составила приблизительно 0,3. Если точность метода нужно повысить, можно повторить описанные ранее действия:

√111 = √111,3025 + (111 - 111,3025) / 2 ∙ √111,3025 = 10,55 - 0,3025 / 21,1 ≈ 10,536.

Проверим точность расчёта:

10,536² = 111,0073.

После повторного применения формулы погрешность стала совсем незначительной.

Вычисление корня делением в столбик

Этот способ нахождения значения квадратного корня является чуть более сложным, чем предыдущие. Однако он является наиболее точным среди остальных методов вычисления без калькулятора .

Допустим, что необходимо найти квадратный корень с точностью до 4 знаков после запятой. Разберём алгоритм вычислений на примере произвольного числа 1308,1912.

  1. Разделим лист бумаги на 2 части вертикальной чертой, а затем проведём от неё ещё одну черту справа, немного ниже верхнего края. Запишем число в левой части, разделив его на группы по 2 цифры, двигаясь в правую и левую сторону от запятой. Самая первая цифра слева может быть без пары. Если же знака не хватает в правой части числа, то следует дописать 0. В нашем случае получится 13 08,19 12.
  2. Подберём самое большое число, квадрат которого будет меньше или равен первой группе цифр. В нашем случае это 3. Запишем его справа сверху; 3 - первая цифра результата. Справа снизу укажем 3×3 = 9; это понадобится для последующих расчётов. Из 13 в столбик вычтем 9, получим остаток 4.
  3. Припишем следующую пару чисел к остатку 4; получим 408.
  4. Число, находящееся сверху справа, умножим на 2 и запишем справа снизу, добавив к нему _ x _ =. Получим 6_ x _ =.
  5. Вместо прочерков нужно подставить одно и то же число, меньшее или равное 408. Получим 66×6 = 396. Напишем 6 справа сверху, т. к. это вторая цифра результата. Отнимем 396 от 408, получим 12.
  6. Повторим шаги 3-6. Поскольку снесённые вниз цифры находятся в дробной части числа, необходимо поставить десятичную запятую справа сверху после 6. Запишем удвоенный результат с прочерками: 72_ x _ =. Подходящей цифрой будет 1: 721×1 = 721. Запишем её в ответ. Выполним вычитание 1219 - 721 = 498.
  7. Выполним приведённую в предыдущем пункте последовательность действий ещё три раза, чтобы получить необходимое количество знаков после запятой. Если не хватает знаков для дальнейших вычислений, у текущего слева числа нужно дописать два нуля.

В результате мы получим ответ: √1308,1912 ≈ 36,1689. Если проверить действие при помощи калькулятора, можно убедиться, что все знаки были определены верно.

Поразрядное вычисление значения квадратного корня

Метод обладает высокой точностью . Кроме того, он достаточно понятен и для него не требуется запоминать формулы или сложный алгоритм действий, поскольку суть способа заключается в подборе верного результата.

Извлечём корень из числа 781. Рассмотрим подробно последовательность действий.

  1. Выясним, какой разряд значения квадратного корня будет являться старшим. Для этого возведём в квадрат 0, 10, 100, 1000 и т. д. и выясним, между какими из них находится подкоренное число. Мы получим, что 10² < 781 < 100², т. е. старшим разрядом будут десятки.
  2. Подберём значение десятков. Для этого будем по очереди возводить в степень 10, 20, …, 90, пока не получим число, превышающее 781. Для нашего случая получим 10² = 100, 20² = 400, 30² = 900. Значение результата n будет находиться в пределах 20 < n <30.
  3. Аналогично предыдущему шагу подбирается значение разряда единиц. Поочерёдно возведём в квадрат 21,22, …, 29: 21² = 441, 22² = 484, 23² = 529, 24² = 576, 25² = 625, 26² = 676, 27² = 729, 28² = 784. Получаем, что 27 < n < 28.
  4. Каждый последующий разряд (десятые, сотые и т. д.) вычисляется так же, как было показано выше. Расчёты проводятся до тех пор, пока не будет достигнута необходимая точность.

Формулы корней. Свойства квадратных корней.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями - это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да...

Начнём с самой простой. Вот она:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Библиографическое описание: Прямостанов С. М., Лысогорова Л. В. Методы извлечения квадратного корня // Юный ученый. — 2017. — №2.2. — С. 76-77..02.2019).





Ключевые слова : квадратный корень, извлечение квадратного корня.

На уроках математики я познакомился с понятием квадратного корня, и операцией извлечения квадратного корн. Мне стало интересно извлечение квадратного корня возможно только по таблице квадратов, с помощью калькулятора или есть способ извлечения вручную. Я нашел несколько способов: формула Древнего Вавилона, через решение уравнений, способ отбрасывания полного квадрата, метод Ньютона, геометрический метод, графический метод (, ), метод подбора угадыванием, метод вычетов нечётного числа.

Рассмотрим следующие способы:

Разложим на простые множители, используя признаки делимости 27225=5*5*3*3*11*11. Таким образом

  1. Канадский метод. Этот быстрый метод был открыт молодыми учёными одного из ведущих университетов Канады в 20 веке. Его точность - не более двух - трёх знаков после запятой.

где х-число, из которого надо извлечь корень, с-число ближайшего квадрата), например:

=5,92

  1. Столбиком. Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр. Для ручного извлечения корня применяется запись, похожая на деление столбиком

Алгоритм извлечения квадратного корня

1.От запятой отдельно дробную и отдельно целую части делим на грани по две цифры в каждой грани (целую часть - справа налево; дробную - слева направо). Возможно, что в целой части может оказаться одна цифра, а в дробной - нули.

2.Извлечение начинается слева направо, и подбираем число, квадрат которого не превосходит числа, стоящего в первой грани. Это число возводим в квадрат и записывает под числом, стоящим в первой грани.

3.Находим разность между числом, стоящим в первой грани, и квадратом подобранного первого числа.

4.К получившейся разности сносим следующую грань, полученное число будет делимым . Образовываем делитель . Первую подобранную цифру ответа удваиваем (умножаем на 2), получаем число десятков делителя, а число единиц должно быть таким, чтобы его произведение на весь делитель не превосходило делимого. Подобранную цифру записываем в ответ.

5.К получившейся разности сносим следующую грань и выполняем действия по алгоритму. Если данная грань окажется гранью дробной части, то в ответе ставим запятую. (Рис. 1.)

Данным способом можно извлекать числа с разной точностью, например с точностью до тысячных. (Рис.2)

Рассматривая различные способы извлечения квадратного корня, можно сделать вывод: в каждом конкретном случае нужно определиться с выбором наиболее эффективного для того, чтобы меньше затратить времени для решения

Литература:

  1. Киселев А. Элементы алгебры и анализа. Часть первая.-М.-1928 г

Ключевые слова: квадратный корень, извлечение квадратного корня .

Аннотация: В статье описываются способы извлечения квадратного корня, и приведены примеры извлечения корней.