Где находится пластиды в клетке. Виды, строение и функции пластид

Пластиды.

Пластиды высших растений бывают 3-х типов. У низших (водорослей, например) они более разнообразны.

    хлоропласты (Хлорос – зеленые) по форме похожи на зерно чечевицы. Поэтому есть название – хлорофилловые зерна. Пигмент хлорофилл придает растениям зеленый цвет.

    Хромопласты – (Хромос –цвет) окрашены различно. Образованы пигментами красного, желтого, оранжевого цвета.

    Лейкопласты (бесцветные).

Хлоропласты находятся в зеленых частях растений. Все пластиды всегда находятся только в цитоплазме растительных клеток. Ни в вакуолях, ни в оболочке пластид не бывает. Цитоплазма – часть протопласта. В виде геля или золя. Состоит из живой части и органоидов: кристаллические белковые зерна, мембранные системы. Основной органоид – ядро. Хлоропласты по консистенции полужидкие, в них происходит фотосинтез.

Фотосинтез – сложный биохимический процесс, комплекс биохимических реакций. Суммарное уравнение фотосинтеза –

6Н 2 0+6СО 2 + h→С 6 Н 12 О 6 + 6О 2 .

Фотосинтез – многоступенчатый процесс. Переносчик ē – цитохромы С. Роль фотосинтеза – космическая. Ее трудно переоценить. В результате фотосинтеза ежегодно образуется 400 млрд тонн органических веществ. При этом связывается в процессе фотоситеза 160 млрд тонн углевода. К счастью, столько же органических веществ и разлагается в результате жизнедеятельности человека, животных, микроорганизмов. Микроорганизмы возвращают в атмосферу СО 2 . Иначе планета была бы завалена неразложенной органикой, истощили запас углекислого газа, которого в атмосфере 0,3 – 0,03%.

Масса растений в 220 раз больше массы всех животных. В фундаменте цепей питания находятся растения. Однако по количеству видов растения значительно уступают. Насекомых более 1 млн видов. Всех растений – 500 тыс видов.

Строение хлоропласта.

Хлоропласт представляет собой двойную белково – липоидную мембрану. Двойная мембрана есть еще только у митохондрий, у остальных органелл – одинарная. Тело хлоропласта – строма, полужидкая. В нее погружены различные мембранные структуры. Их 2 типа: плоские дисковидные мешочки, уложенные стопочками – граны. На мембранах гран находится пигмент хлорофилл – источник энергии для фотосинтеза. Граны связаны между собой более узкими мембранами – тилакоидами стромы. Не имеют форму дисков. Их совокупность образует единую систему. Синтез органических веществ происходит в строме. Кроме хлорофилла есть и другие пигменты – красный – каротин, желтый – ксантофилл, их меньше, чем хлорофиллов.

Кроме пигментов содержится ДНК – вещество наследственности, РНК – посредник в переносе наследственной информации, рибосомы. Причем, синтез белка в хлоропластах не зависит от ядерной ДНК. Если белок синтезируется, то он присутствует в биосинтезе.

Внутри стромы находятся шаровидные образования, крахмалистые – результат фотосинтеза, трансформируется в другие части клетки.

Хромопласты – имеют различные оттенки красного, желтого, оранжевого цветов и находятся в ярко – окрашенных частях растений. Например, лепестки цветов, поды, корнеплоды – хромопласты придают им яркую окраску. Форма хромопластов неодинакова даже в пределах одной клетки. Зрелые хромопласты – твердые. Цвет зависит от соотношения каротина и ксантофилла. Т.к. эти пигменты откладываются в виде кристаллов, то их различное взаиморасположение придает различную форму пластидам. Роль хромопластов заключается в том, что яркая окраска венчиков привлекает насекомых – опылителей. Яркие плоды – привлекательны для животных, распространяющих семена. Хромопласты содержатся в корнеплодах. Морковь, содержит каротин = провитамин А. В плодах шиповника, рябины, яркие румяные яблоки, желтые лютики, оранжевые настурции, летнее разнотравье – результат присутствия хромопластов. Плоды вишни, сливы окрашены антоцианом клеточного сока. Белые венчики результат отсутствия пигментов, или наличия лейкопластов. Тем не менее, белые душистые цветки ландыша в хвойном лесу привлекают насекомых ярким белым пятном.

Лейкопласты – бесцветные. Располагаются в таких частях растений как кожица листьев, корневища, корни, корнеплоды, клубни картофеля. Не имеют пигментов, поэтому бесцветные. С трудом наблюдаются в микроскоп. Роль лейкопластов – накопление питательных веществ, увеличение размеров, определяют форму, тогда их называют по веществам: если накапливается крахмал, то образуются крахмальные зерна = амилопласты; если масло в виде капель = олеинопласты (элайопласты); если белки = называются протеинопласты-белковые зерна.

Форма лейкопластов – видовой признак.

Все пластиды имеют общее происхождение, поэтому могут превращаться друг в друга. Например, осеннее изменение окраски листьев – хлоропласты превращаются в хромопласты. При понижении температуры распад хлорофилла происходит быстрее, чем распад каротиноидов. Позеленение бесцветного ростка (глазки картофеля) – лейкопласты переходят в хлоропласты. Хромопласты – конечный продукт превращения. Хромопласты не могут превращаться в другие структуры. Яблоки, шиповник превращаются из зеленых в красные – аналогичный процесс взаимоперехода пластид. Если зеленые побеги держать в темноте, то они светлеют.

Пластиды не могут синтезироваться из других веществ.

Гетеротрофы питались фаго- или пиноцитозом. Полагают, что при встрече клеток гетеротрофов и цианобактерий образовывались пищеварительные вакуоли, клетки переваривались, а питательные вещества использовались гетеротрофами. Поскольку в результате попадала часть веществ фотосинтеза, то постепенно перестраивались биохимические процессы. Такой симбиоз был выгоден для обоих организмов. Гетеротрофы получали органические вещества, а синезеленые водоросли – постоянство среды, защиту, углекислый газ, воду. В пользу этой гипотезы говорит двойная мембрана. Одна мембрана – принадлежность бактерии,– пищеварительной вакуоли гетеротрофа, а другая – оболочка сине-зеленой водоросли. Митохондрии имеют также симбиотическое происхождение.

Доказательством этой гипотезы служит автономное поведение хлоропластов внутри клеток, собственная биосинтетическая система. Размножение делением независимо от ядра клетки.

Недостаток теории: сине-зеленые водоросли способны к самостоятельному существованию на примитивном уровне. У современных – другой биохимический состав, другие пигменты, хлорофилл, другие запасные питательные вещества, не образуется крахмал.

Пластиды - органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды - лейкопласты ;
  • окрашенные - хлоропласты (зеленого цвета);
  • окрашенные - хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга - лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов - в хромопласты.

Строение и функции хлоропластов

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент - хлорофилл.

Основная функция хлоропласт - фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца - граны и мембранные каналы.


Граны (размером около 1мкм) - пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.


В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные - a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов - зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые - бактериохлорофилл b, зеленые бактерии - c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл - единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях - поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.


Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты - это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.


Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Разновидности лейкопластов:

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Сводная таблица строения и функций пластид

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранная органелла, с гранами и мембранными канальцами Органелла с не развитой внутренней мембранной системой Мелкие органеллы, находятся в частях растения, скрытых от света
Окрас Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Округлая Многоугольная Шаровидная
Функции Фотосинтез Привлечение потенциальных распространителей растений Запас питательных веществ
Заменимость Переходят в хромопласты Не изменяются, это последняя стадия развития пластид Превращаются в хлоропласты и хромопласты

Это бесцветные или окрашенные тельца в протоплазме растительных клеток, представляющие собой сложную систему внутренних мембран (мембранные органеллы) и выполняющие различные функции. Бесцветные пластиды называют лейкопластами , различно окрашенные (желтого, оранжевого или красного цвета) - хромопластами , зеленые - хлоропластами . В клетке высших растений содержится около 40 хлоропластов в которых происходит фотосинтез . Они, как уже было сказано, способны к автономному размножению, не зависящему от деления клетки. Размеры и форма митохондрий и хлоропластов, наличие в их матриксе кольцевых двухцепочных ДНК и собственных рибосом делают эти органеллы похожими на бактериальные клетки. Существует теория симбиотического происхождения эукариотической клетки , согласно которой предки современных митохондрий и хлоропластов были когда-то самостоятельными прокариотическими организмами.

Пластиды характерны только для растений. Они не найдены у грибов и у большинства животных, исключая некоторых фотосинтезирующих простейших.

Предшественниками пластид являются пропластиды , мелкие, обычно бесцветные образования, находящиеся в делящихся клетках корней и побегов . Если развитие пропластид в более дифференцированные структуры задерживается из-за отсутствия света, в них может появиться одно или несколько проламеллярных телец (скопления трубчатых мембран). Такие бесцветные пластиды называются этиопластами . Этиопласты превращаются в хлоропласты на свету, а из мембран проламеллярных телец формируются тилакоиды . В зависимости от окраски, связанной с наличием или отсутствием тех или иных пигментов, различают три основных типа пластид (см. выше) - хлоропласты , хромопласты и лейкопласты . Обычно в клетке встречаются пластиды только одного типа. Однако установлено, что одни типы пластид могут переходить в другие.

Пластиды - относительно крупные образования клетки. Самые большие из них - хлоропласты - достигают у высших растений 4-10 мкм длины и хорошо различимы в световой микроскоп. Форма окрашенных пластид чаще всего линзовидная или эллиптическая. В клетках встречаются, как правило, несколько десятков пластид, но у водорослей, где пластиды нередко крупны и разнообразны по форме, число их иногда невелико (1-5). Такие пластиды называются хроматофорами . Лейкопласты и хромопласты могут иметь различную форму.

Основная функция хлоропластов - фотосинтез. Центральная роль в этом процессе принадлежит хлорофиллу , точнее - нескольким его модификациям. Световые реакции фотосинтеза осуществляются преимущественно в гранах , темновые - в строме

Зрительные пигменты

Зрительные пигменты

Зрительные пигменты сконцентрированы в мембранах наружных сегментов. Каждая палочка содержит около 108 молекул пигмента. Они организованы в несколько сотен дискретных дисков (около 750 в палочке обезьян), которые не связаны с наружной мембраной…

Изучение сине-зеленых водорослей, прибрежно-водной растительности и класса насекомые

Отдел Сине-зеленые водоросли. Особенности организации, жизненные формы, пигменты, жизненный цикл

водоросль гербаризация растительность плавунец В названии отдела (от греч. cyanos- синий) отражена характерная особенность этих водорослей — окраска таллома, связанная с относительно высоким содержанием синего пигмента фикоцианина…

Пластиды и их пигменты. Выделительные системы растений

I. ПЛАСТИДЫ И ИХ ПИГМЕНТЫ, ФОТОСИНТЕЗ, НЕОБХОДИМЫЕ ДЛЯ НЕГО УСЛОВИЯ, ДЕЛЕНИЕ КЛЕТКИ

Физиология и биохимия компонентов растений

5. Флавоноидные пигменты

Водорастворимые фенольные гликозиды, в которых общей основой структурной единицей является C15 — скелет флавона, составляют большую группу флавоноидных пигментов. К ним относятся антоцианы, флавоны и флавонолы: Антоцианы…

Фотосинтез как основа энергетики биосферы

4 Пигменты хлоропластов

Пигменты — важнейший компонент аппарата фотосинтеза. Изучение растительных пигментов резко ускорилось благодаря работам русского физиолога растений М. С. Цвета. Пытаясь найти способ разделения пигментов на индивидуальные вещества…

Цитология и гистология

3. Пластиды: типы, происхождение, строение и функции

Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей). В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10 мкм…

Пластиды - это органоиды клеток растений и некоторых фотосинтезирующих простейших. У животных и грибов пластид нет.

Пластиды делятся на несколько типов. Наиболее важный и известный - хлоропласт, содержащий зеленый пигмент хлорофилл, который обеспечивает процесс фотосинтеза.

Другими видами пластид являются разноцветные хромопласты и бесцветные лейкопласты.

Также выделяют амилопласты, липидопласты, протеинопласты, которые часто считают разновидностями лейкопластов.

Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.

Строение пластид

Большинство пластид относится к двумембранным органоидам, у них есть внешняя и внутренняя мембраны.

Однако встречаются организмы, чьи пластиды имеют четыре мембраны, что связано с особенностями их происхождения.

Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры как тилакоиды, граны (стопки тилакоидов), ламелы – удлиненные тилакоиды, соединяющие соседние граны. Внутренне содержимое пластид обычно называют стромой.

В ней помимо прочего находятся крахмальные зерна.

Считается, что в процессе эволюции пластиды появились аналогично митохондриям - путем внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу. Поэтому пластиды считают полуавтономными органеллами.

Пластиды и их пигменты

Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат. Это не значит, что в пластиды не поступают белки и РНК из цитоплазмы. Часть генов, управляющей их функционированием, находится как раз в ядре.

Функции пластид

Функции пластид зависят от их типа.

Хлоропласты выполняют фотосинтезирующую функцию. В лейкопластах накапливаются запасные питательные вещества: крахмал в амилопластах, жиры в элайопластах (липидопластах), белки в протеинопластах.

Хромопласты, за счет содержащихся в них пигментов-каротиноидов, окрашивают различные части растений – цветки, плоды, корнеплоды, осенние листья и др.

Яркий окрас часто служит своеобразным сигналом для животных-опылителей и распространителей плодов и семян.

В дегенерирующих зеленых частях растений хлоропласты превращаются в хромопласты. Пигмент хлорофилл разрушается, поэтому остальные пигменты, несмотря на малое количество, становятся в пластидах заметными и окрашивают туже листву в желто-красные оттенки.

Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы).

Они выполняют различные функции, связанные, главным образом, с синтезом органических веществ. В зависимости от окраски, обусловленной наличием пигментов, различают три основных типа пластид:

  • хлоропласты,
  • хромопласты,
  • лейкопласты.

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент хлорофилл и небольшое количество каротина и ксантофилла.

Главная функция хлоропластов — фотосинтез, в результате которого происходит образование богатых энергией органических веществ. Синтез хлорофилла обычно происходит только на свету, поэтому растения, выращенные в темноте или при недостатке света, становятся бледно-желтыми и называются этиолированными. Вместо типичных хлоропластов в них образуются этиопласты.

В клетках низших растений (водорослей) хлоропласты крупные и немногочисленные (один или несколько). Они имеют разнообразную форму (пластинчатую, звездчатую, ленточную и др.). Такие хлоропласты называются хроматофорами.

Хромопласты представляют собой пластиды, содержащие пигменты из группы каротиноидов, имеют желтую, оранжевую или красную окраску.

К каротиноидам относят широко распространенные каротины (оранжевые) и ксантофиллы (желтые). Хромопласты имеют разнообразную форму. Они образуются в осенних листьях, корнеплодах (морковь), зрелых плодах и т.д. В отличие от хлоропластов, форма хромопластов очень изменчива, но видоспецифична, что объясняется их происхождением и состоянием в них пигментов.

Лейкопласты - это мелкие бесцветные пластиды шаровидной, яйцевидной или веретеновидной формы. Они обычно встречаются в клетках органов, скрытых от солнечного света: в корневищах, клубнях, корнях, семенах, сердцевине стеблей и очень редко — в клетках освещенных частей растения (в клетках эпидермы).

Часто лейкопласты собираются вокруг ядра, окружая его со всех сторон. Деятельность лейкопластов специализирована и связана с образованием запасных веществ. Одни из них накапливают преимущественно крахмал (амилопласты), другие — белки (протеопласты или алейронопласты), а третьи — масла (олеопласты).

Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.

Что такое пластиды: строение и функция

У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.

У высших растений также встречается деление зрелых хлоропластов, но очень редко.

Увеличение числа хлоропластов и образование других форм пластид (лейкопластов и хромопластов) следует рассматривать как путь превращения структур-предшественников, пропластид.

Весь же процесс развития различных пластид можно представить в виде монотропного (идущего в одном направлении) ряда смены форм:

Многими исследованиями был установлен необратимый характер онтогенетических переходов пластид. У высших растений возникновение и развитие хлоропластов происходят через изменения пропластид.

Пропластиды представляют собой мелкие (0,4-1 мкм) двумембранные пузырьки, не имеющие отличительных черт их внутреннего строения. Они отличаются от вакуолей цитоплазмы более плотным содержимым и наличием двух отграничивающих мембран, внешней и внутренней.

Внутренняя мембрана может давать небольшие складки или образовывать мелкие вакуоли. Пропластиды чаще всего встречаются в делящихся тканях растений (клетки меристемы корня, листьев, в точки роста стеблей и др.). По всей вероятности, увеличение их числа происходит путем деления или почкования, отделения от тела пропластиды мелких двумембранных пузырьков.

Социальные кнопки для Joomla

Пластиды

Строение пластид: 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - строма; 4 - тилакоид; 5 - грана; 6 - ламеллы; 7 - зерна крахмала; 8 - липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид : лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты - зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы.

Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр - от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке.

Граны связываются друг с другом уплощенными каналами - ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3).

В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез.

Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.).

Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ.

Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.).

21. Пластиды высших и низших растений

Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты - лейкопласты, которые синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты - белки.

В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами.

Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты - каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко - корнеплодов.

Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды - мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты - в хромопласты (пожелтение листьев и покраснение плодов).

Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Предыдущая18192021222324252627282930313233Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Пластиды - это органоиды растительных клеток. Одним из видов пластид являются фотосинтезирующие хлоропласты. Другие распространенные разновидности - хромопласты и лейкопласты.

Все их объединяет единство происхождения и общий план строения. Различает - преобладание определенных пигментов и выполняемые функции.

Пластиды развиваются из пропластид, которые присутствуют в клетках образовательной ткани и существенно меньше по размеру, чем зрелый органоид. Кроме того, пластиды способны к делению надвое перетяжкой, что подобно делению бактерий.

В строении пластид выделяют внешнюю и внутреннюю мембраны, внутреннее содержимое - строму, внутреннюю мембранную систему, которая особенно развита в хлоропластах, где формирует тилакоиды, граны и ламелы.

В строме содержится ДНК, рибосомы, различные типы РНК.

Пластиды, содержащие пигмент хлорофилл

Таким образом, как и митохондрии, пластиды способны к самостоятельному синтезу части необходимых белковых молекул. Считается, что в процессе эволюции пластиды и митохондрии появились в результате симбиоза разных прокариотических организмов, один из которых стал клеткой-хозяином, а другие - ее органеллами.

Функции пластид зависят от их вида:

  • хлоропласты → фотосинтез,
  • хромопласты → окраска частей растения,
  • лейкопласты → запас питательных веществ.

Растительные клетки содержат преимущественно один из видов пластид.

В хлоропластах преобладает пигмент хлорофилл, поэтому содержащие их клетки зеленые. В хромопластах содержатся пигменты каротиноиды, которые придают цвет от желтого, через оранжевый к красному. Лейкопласты бесцветны.

Окраска хромопластами цветков и плодов растения в яркие цвета привлекает насекомых-опылителей и животных-распространителей семян. В осенних листьях происходит разрушение хлорофилла, в результате цвет определяется каротиноидами.

Из-за этого листва приобретает соответствующую окраску. При этом хлоропласты превращаются в хромопласты, которые часто рассматривают как конечную стадию развития пластид.

Лейкопласты при освещении способны превращаться в хлоропласты. Это можно наблюдать у клубней картофеля, когда на свету они начинают зеленеть.

Выделяют несколько видов лейкопластов в зависимости от типа накапливаемых в них веществ:

  • протеинопласты → белки,
  • элайопласты , или липидопласты, → жиры,
  • амилопласты → углеводы, обычно в виде крахмала.

ПЛАСТИДЫ

Пластиды всегда находятся в протоплазме, близки к ней по физическим и химическим свойствам, возникают только от пластид. Они способны к росту и размножаются делением, могут образовывать в своем теле (в строме) определенные пигменты и формировать внутри стромы крахмал. В зависимости от содержания тех или иных пигментов находится окраска и функции основных пластид высших растений: а) зеленых пластид (хлоропластов), б) красных и желтых (хромопластов) и в) бесцветных (лейкопластов).

Все пластиды, по-видимому, имеют сходное строение; лучше изучено строение хлоропластов.

1 - клетка из нити Zygnema cruciatum ; 2 - отдельная клетка из нити спирогиры; п - пиреноиды.

х - хроматофор; п - пиреноиды с крахмалом; я - ядро.

Хлоропласты . Хлоропласты высших растений (называемые также хлорофилловыми зернами) по форме до некоторой степени сходны с линзами: в плане хлоропласт имеет очертание, более или менее близкое к кругу, а при рассматривании в профиль напоминает эллипс. Если хлорофилловые зерна лежат тесным слоем, то, нажимая друг на друга, они принимают угловатую форму. Число хлорофилловых зерен в различных клетках очень изменчиво. Например, в клетках листа клещевины количество хлорофилловых зерен колеблется от 10 до 36, в клетках Elodea densa - от 26 до 32. Диаметр хлорофилловых зерен составляет 4-9 μ.

По своим размерам хлорофилловые зерна менее разнообразны, чем ядра, а тем более сами клетки, хотя некоторые авторы отмечают, что хлорофилловые зерна крупнее в клетках больших размеров. Когда И. И. Герасимов в культурах спирогиры получал крупные клетки с двойной массой ядра, то в таких клетках и спиральные хлоропласты были крупнее, чем в нормальных, и число их возрастало с 8 до 12-13 (рис. 18). Исключительно крупные хлоропласты отмечены для Peperomia metallica : диаметр

хлоропластов достигает 24 μ, но здесь следует отметить, что число их в клетке очень невелико - их только 4.

Хлоропласты могут изменять форму и размеры. Некоторые изменения зависят от поверхностного натяжения; при возрастании его уменьшается величина поверхности, и форма пластиды приближается к сферической - пластида "округляется"; при уменьшении поверхностного натяжения пластида удлиняется. Форма хлоропластов может меняться в зависимости от освещения; например, в листьях клещевины, подвергнутых затенению, хлоропласты становятся почти изодиаметрическими (с наибольшим размером ∼6,3 μ и наименьшим ∼5,7 μ); на ярком свету они меняют форму на чечевицеобразную (с диаметром ∼8,3 μ и толщиной ∼3,6 μ).

В культуре водяной чумы (элодеи) при разных температурах хлорофилловые зерна в листьях, выросших при более высокой температуре, получались почти вдвое меньшими.

Очень разнообразны по форме хлоропласты водорослей - хроматофоры (рис. 28, 29).

В окрашенных пластидах - хроматофорах - многих водорослей (рис. 28, 29) и некоторых из печеночников, относящихся к роду Anthoceros , имеются особые, тягуче-жидкие тельца, чаще всего округлой или угловатой формы; эти тельца, называемые пиреноидами , богаты белковыми веществами, но нуклеинов не содержат. Вокруг пиреноидов обычно располагаются мелкие крахмальные зерна; эти зерна крахмала образуются в клетке в первую очередь, а исчезают в последнюю. Пиреноиды образуются путем деления уже существующих, но могут и возникать в клетке заново.

Хлоропласты содержат в строме четыре пигмента: два зеленых (хлорофилл a и хлорофилл b ), оранжево-красный (каротин, или, иначе, каротен) и желтый (ксантофилл).

По своему химическому составу хлорофилл представляет собой сложный эфир дикарбоновой кислоты хлорофиллина и двух спиртов - метилового и фитола.

Хлорофилл а отличается от хлорофилла b по количеству атомов водорода и кислорода.

Хлорофилл а имеет синеватый оттенок, хлорофилл b - желтоватый. Молекулярный вес хлорофилла равен ∼ 900.

И. П. Бородин, обрабатывая срезы зеленых частей растения на предметном стекле этиловым спиртом, получал после медленного высушивания препарата темно-зеленые или почти черные кристаллы в виде трех- или шестиугольных пластинок и тетраэдров. В дальнейшем было выяснено, что это кристаллы хлорофилла, в молекулах которого фитольная группа замещена этильной.

Центральное место в молекулах хлорофиллов a и b занимает атом магния, связанный с 4 атомами азота.

В одном хлорофилловом зерне содержится 6% хлорофилла; остальное составляют вода, белки, липиды и др.

Из пигментов, сопровождающих хлорофиллы, оранжево-красный каротин представляет ненасыщенный углеводород формулы C 40 H 56 , а желтый ксантофилл (C 40 H 56 O 2) - двухатомный спирт, как бы продукт окисления каротина. Каротин и ксантофилл относятся к обширной группе каротиноидов - пигментов желтого, оранжевого и красного цветов, ряд других представителей которых также встречается в растениях. Всю совокупность пигментов хлоропласта иногда называют "хлорофиллом" в широком смысле слова.

Вытяжка зеленых листьев и в меньшей мере сами листья обнаруживают явление флуоресценции. В проходящем свете вытяжка кажется зеленой, а в падающем - вишнево-красной. За очень редкими исключениями, в органах покрытосеменных растений при развитии их в отсутствии света зеленые пигменты в хлоропластах не образуются или образуются в ничтожном количестве; на свету происходит их быстрое позеленение.

В хлоропластах совершается сложный процесс фотосинтеза - образования углеводов из углекислого газа и воды под действием энергии солнечного света .

Окончательный результат процесса фотосинтеза можно представить в виде следующей реакции:

6CO 2 + 6H 2 O + 674 ккал → C 6 H 12 O 6 + 6O 2

Образовавшийся углевод обычно полимеризуется в крахмал по схеме:

n C 6 H 12 O 6 → (C 6 H 10 O 5) n + n H 2 O


Рис. 30. Хлорофилловые зерна листа мха Funaria hydrometrica :

1 - участок взрослого листа с несколькими клетками (в плане); в постенном слое протоплазмы расположены хлорофилловые зерна с мелкими крахмальными зернами (отмечены белым цветом); 2-10 - отдельные хлорофилловые зерна с крахмалом: 2 - молодое, 3 - более взрослое, 9 и 10 - делящиеся, 4, 5 и 6 - заполненные крахмалом, 7 - молодое, набухшее в воде, 8 - расплывшееся в воде и оставившее после себя крахмальные зерна.

Крахмал откладывается в хлоропластах в виде мелких зерен ассимиляционного , или автохтонного , крахмала (рис. 30, 32).

У некоторых растений, преимущественно однодольных, ассимиляционного крахмала обычно не образуется (кроме как в замыкающих клетках устьиц) и продуктом фотосинтеза является глюкоза. При сильно повышенном содержании CO 2 в атмосфере в хлоропластах сахарообразующих растений (сахарного тростника, сахарной свеклы) на свету появляется крахмал.

Способность к фотосинтезу и ряд других свойств пластид как биологически активных систем объясняются наличием в хлоропластах ферментов . Эта очень сложная ферментативная система обеспечивает не только

весь процесс фотосинтеза, но и отток продуктов ассимиляция из хлоропласта. В состав этой системы входит зеленый пигмент пластид - хлорофилл.

О внутренней структуре хлоропласта было очень много споров, выдвигалось много теорий, но только применение электронного микроскопа дало возможность более детально изучить его субмикроскопическое строение (рис. 31, 32). В настоящее время считают, что хлоропласты высших растений имеют пластинчатую структуру. Пластинки стромы чередуются с пластинками, состоящими из гранул (зернышек), содержащих хлорофилл. Связь между гранулами и стромой в настоящее время еще не совсем ясна.

В выяснении вопросов роли хлорофилла в процессе фотосинтеза и значении лучей различных областей солнечного спектра в этом процессе большая заслуга принадлежит К. А. Тимирязеву. Тимирязев изучал хлорофилл как "связующее звено между солнцем и жизнью", а хлорофилловое зерно - как тот фокус, ту точку в мировом пространстве, где солнечный луч, превращаясь в химическую энергию, становится источником всей жизни на Земле.

Тимирязев установил, что наиболее интенсивно поглощаются красные лучи (с длиной волны от

Справа - сформированный хлоропласт, в строме которого видны три линзовидных крахмальных зерна.

730 до 680 м μ) и в несколько меньшей мере лучи сине-фиолетовой части спектра (с длиной волны 470 м μ и меньше).

Осенью перед опадением листа хлорофилловые зерна желтеют; это пожелтение зависит от того, что зеленые пигменты разрушаются раньше, чем желтые; пожелтение связано с оттоком веществ из листовой пластинки в осевые органы.

Хромопласты . Хромопласты - пластиды, содержащие пигменты из числа каротиноидов (каротин и ксантофилл). Они имеют окраску от желтой (в лепестках лютиков) и оранжевой (в кожуре апельсинов) до оранжево-красной (в корнях моркови) и ярко-красной (в плодах шиповников).


Рис. 33. Клетка чашелистика настурции Tropaeolum majus с ядром и хромопластами.

1 - в клетках кожицы Philodendron grandifolium; 2, 3 - в клетках семени Melandrium macrocarpum; 4 - в клетках корня Phajus grandifolius (изображено лишь ядро с лейкопластами подле него).

По форме хромопласты весьма разнообразны. Изредка они бывают эллипсоидальными или при тесном расположении многоугольно-таблитчатыми, лопастными и т. д. Обычно хромопласт имеет игловидное и угловатое очертание, его строма растянута пигментом, составляющим преобладающую по объему часть хромопласта (рис. 33). У многих растений в хромопластах отмечается наличие крахмала.

В хромопластах иногда обособляются белковые вещества или образуются капли масла: в клетках кожуры плодов апельсина и других цитрусовых пигмент хромопластов частично растворен в эфирных маслах.

Не всегда окраска плодов зависит только от хромопластов. От наличия пластид зависят цвета зеленый, желтый, кирпично-красный (лепестки цветков лютиковых, сложноцветных, корни моркови, многие созревающие плоды). Цвета же синий, малиновый, темно-красный (плоды малины, калины) зависят от окраски клеточного сока, содержащего антоцианы. Часто получается смешанный цвет, обусловленный окраской клеточного сока и пластид.

Очень показательно провести отделение каротина бензолом от спиртовых вытяжек плодов красного перца и рябины. Если к спиртовой вытяжке плодов перца добавить бензол, то сверху в бензоле окажется растворенным каротин, а ксантофилл окажется внизу в спирте. Клеточный сок (также остается в спирте) бесцветный. Если повторить этот опыт с плодами рябины, можно видеть, что каротина в них не так уж много, так как бензольная фракция будет гораздо более бледной, чем таковая красного перца, а спирт останется окрашенным в розовый цвет от наличия антоциана.

Белый цвет лепестков обусловлен равномерным рассеиванием света при отражении его от пузырьков воздуха, заключенных в сильно развитых межклеточных пространствах и на поверхности органа.

Желтый цвет некоторых цветков и плодов (георгин, льнянка, мак, лимон) зависит также от пигмента клеточного сока, родственного антоциану, - антохлора.

Окраска частей растений может зависеть еще от цвета отмерших клеток и их измененного содержимого (оболочка семян, поверхность стволов деревьев).

Лейкопласты . Пластиды, не содержащие в строме пигментов и называемые лейкопластами , имеются во многих клетках большинства растений (рис. 34). Так как лейкопласты бесцветны и к тому же преломляют свет почти так же, как протоплазма, не всегда легко обнаружить их присутствие в клетке.

По форме лейкопласты обычно почти шаровидны. В тех случаях, когда в их строме находится крахмал или белок, они принимают иные очертания. Сравнительно богаты лейкопластами образовательные ткани, подземные органы, семена.

В лейкопластах может образовываться крахмал, отлагающийся в виде зерен в их строме.

Во многих случаях крахмал накопляется в лейкопласте в столь большом количестве, что живое тело пластиды (строма) оттесняется на периферию. Его можно не без труда заметить в виде очень тонкой пленки на поверхности крахмального зерна; в этих случаях лейкопласт является крахмалонакопителем в полной мере (подробнее о запасном крахмале см. на стр. 78).

Движение пластид . Кроме перемещений пластид, связанных с распределением их между дочерними клетками, образующимися в результате деления клетки, совершаются другие передвижения их: 1) зависящие от возрастных изменений клетки и пластид и 2) обратимые и многократно повторяющиеся движения, связанные с изменениями в направлении и интенсивности воздействия факторов среды ("ориентировочные" движения пластид).

Хлорофилловые зерна, находящиеся в постенном слое протоплазмы, могут перемещаться в клетке. Они не только пассивно увлекаются протоплазмой при ее движении, но, в зависимости от силы и направления света, сами могут менять свое положение в клетке. И. П. Бородин показал, что лучше всего это видно на тонких листочках ряски (Lemna trisulca ).

На рисунке 35 изображено размещение хлорофилловых зерен в клетках, которые находились в различных условиях освещения. На рассеянном свету хлорофилловые зерна располагаются по стенкам, которые находятся под прямым углом к главному направлению лучей; на каждое зерно непосредственно попадает бо́льшая часть падающего света. На ярком солнечном свету хлорофилловые зерна перемещаются на боковые стенки, которые лежат

вдоль падающих лучей. Свет, проникающий в клетку, не попадает на зерно прямо, а рассеивается в стороны и освещает при этом зерна более равномерно. В темноте зерна располагаются по стенкам, которые соприкасаются со стенками соседних клеток, как говорят по теплым стенкам, но последнее расположение не всегда удается наблюдать.

Интересно, что освещение отдельных хлорофилловых зерен происходит весьма равномерно. Самостоятельная скорость перемещения хлорофилловых зерен в клетке равна 0,12 μ в секунду, т. е. скорость значительно меньшая, чем движение амебы и плазмодия.

На расположение хлорофилловых зерен влияет не только сила и направление света. В некоторых случаях наблюдалось перемещение хлорофилловых зерен к тем участкам клеточной стенки, к которым подходят межклеточные пространства; по межклетникам поступает углекислота, поглощаемая в процессе ассимиляции.


Рис. 35. Перемещение хлорофилловых зерен в клетках ряски трехдольной (Lemna trisulca ):

А - часть растения в плане, верхняя левая часть находилась в темноте, правая нижняя часть - на рассеянном свету (по Бородину); Б - частичные поперечные разрезы через растения, выдержанные: 1 - на рассеянном свету; 2 - на прямом солнечном; 3 - в темноте.

Происхождение пластид . Резких границ между пластидами различных категорий нет. Пластиды одного типа могут переходить в пластиды другого типа. В самом деле, в проростках и во взрослых особях многие из пластид, возникающих в результате деления лейкопластов клеток зародыша, становятся хлоро- и хромопластами. Хлоропласт, теряя хлорофилл и обогащаясь каротиноидами (как в созревающих плодах шиповника), становится хромопластом; лейкопласт при накоплении в его строме каротиноидов превращается в хромопласт (как в корнях моркови). Достаточно обнажить верхнюю часть растущего в почве красного "корнеплода" моркови от земли, чтобы через некоторое время эта часть гипокотиля и корня позеленела: хромопласты клеток становятся хлоропластами.

Вопрос о первоначальном возникновении пластид в клетках растений в настоящее время еще не совсем ясен. Существовала теория возникновения пластид из хондриосом; большинство исследователей от нее отказались. В последнее время высказывается мнение, что пластиды возникают из особых образований - пропластид.

В настоящее время известно, что в растениях хлорофилл присутствует в нескольких формах, но известно строение только двух его форм - a и b , причем и здесь положение двойных связей и характер связи магния с азотом еще нуждаются в уточнении.

А. С. Фаминцын впервые установил, что процесс фотосинтеза может происходить и при искусственном освещении.