Ритмичность в биологии. Значение биологических ритмов

БИОЛОГИЧЕСКИЕ РИТМЫ (биоритмы), периодически повторяющиеся изменения характера и интенсивности биологических процессов, свойственных живым организмам. Иначе говоря, это «повторение подобного в подобных промежутках времени». Биологические ритмы свойственны растениям, животным, человеку. Проявляются на всех уровнях организации жизни: молекулярно-генетическом, клеточном, тканевом, организменном, популяционно-видовом, биоценотическом и биосферном. Подразделяются на экзогенные, возникающие в организмах в ответ на космические, геофизические и иные колебания, происходящие в окружающей среде (напр., колебания численности популяции, связанные с ритмами активности Солнца), и эндогенные, генерируемые самим организмом (сердечные, дыхательные и др.). Физиологические биоритмы меняют свои параметры (частоту, силу) в зависимости от состояния организма (возраста, болезней и пр.). Экологические биоритмы зависят от циклических изменений среды и относительно стабильны. Более того, они могут сохраняться, если животное оказывается в иных условиях, напр. беспозвоночные литорали сохраняют ритм прилива-отлива, находясь в аквариуме с постоянным уровнем воды и стабильными показателями её солёности и температуры. Среди экологических ритмов различают: годичные с периодом от 10 до 13 мес., лунные с периодами 29,53 сут и 24,8-12,4 ч (приливные), суточные солнечные (24 ч).

Биоритмы животных и человека генерируются группой особых клеток-пейсмекеров, или ритмоводителей (часто их называют биологическими часами). Располагаются они в различных органах, напр. у медуз – в ропалиях (органах чувств), у ракообразных – в основании стебельчатых глаз. У млекопитающих, в т. ч. человека, существуют несколько центров ритма, напр. в области сердца, промежуточного и продолговатого мозга.

У человека биоритмы в зависимости от периода колебаний подразделяются на высокочастотные (от секунды до получаса), средней частоты (от получаса до 28 ч), низкой частоты (недели, месяцы, годы). Примером биоритмических колебаний высокой частоты служат ритмы дыхания, сердечных сокращений и др. Биоритмы средней частоты (с интервалом от 1,5 ч до 3 ч) отмечаются как у новорождённых, у которых каждые 90 мин активность сменяется состоянием покоя, так и у взрослых – с такой периодичностью происходит чередование стадий сна, а во время бодрствования работоспособность сменяется расслаблением. Ритмам с периодом в 20–28 ч соответствуют колебания температуры, пульса, артериального давления, освобождения кишечника. В основе выделения биоритмов низкой частоты лежат чётко регистрируемые колебания к.-л. функционального показателя. Напр., недельному ритму соответствует уровень накопления в крови некоторых гормонов, месячному – менструальный цикл у женщин, сезонному – продолжительность сна.

Изучение и поддержание установившихся ритмов жизнедеятельности человека важно для рациональной организации труда и отдыха, что особенно актуально для лиц, работающих в разные смены, проживающих в условиях Крайнего Севера, при перелёте нескольких часовых поясов. Большое внимание учёные уделяют т. н. расчётным низкочастотным ритмам – физическому с периодом в 23 дня, эмоциональному – в 28 дней и интеллектуальному – в 33 дня. Эти ритмы «запускаются» в момент рождения и сохраняются затем с удивительным постоянством в течение всей жизни. Первая половина периода каждого ритма характеризуется нарастанием, вторая – спадом физической, эмоциональной и интеллектуальной активности.

Биологический ритм - это колебательный процесс, приводящий к воспроизведению биологического явления или состояния биологической системы через приблизительно равные промежутки времени.

Мы считаем вполне естественным и ничуть не удивляемся, когда, например, ощущаем вечером сонливость и отправляемся спать, подчиняясь по существу своим биологическим часам. Еще более понятным и не требующим особых пояснений кажется нам появление с наступлением темноты ощущения усталости, которое, собственно, и вызывает сонливость. Но если человек на протяжении нескольких недель находится, ничего не делая, в полутемном помещении, куда не проникают никакие звуки, то и тогда он будет засыпать и просыпаться примерно каждые 24 часа, как бы отмеряя сутки за сутками.

В жизнедеятельности растений и животных помимо сна немало проявлений и других ритмов: более 2400 лет назад Гиппократ писал о подъемах и падениях, присущих физическому состоянию людей, почти 300 лет назад (1729) французский математик и астроном Жан жак де Меран обнаружил 24-часовую периодическую активность у растений, в дальнейшем Христофор Гуфелянд (1797), рассматривая колебания температуры тела у здоровых и больных пациентов, высказал предположение о том, что в организме существуют "внутренние часы", ход которых определяется вращением Земли вокруг своей оси. Он впервые обратил внимание на универсальность ритмических процессов у биологических объектов и подчеркнул, что наша жизнь, очевидно, повторяется в определенных ритмах, а каждый день представляет маленькое изложение нашей жизни.

Прогрессивное развитие учения о биологических ритмах провело к возникновению новой междисциплинарной фундаментальной науки - хронобиологии, которая изучает закономерности осуществления процессов жизнедеятельности организма во времени. Учение о биологических ритмах стало составной частью хронобиологии. Однако до настоящего времени, несмотря на внедрение методов хронобиологии в другие области исследования живых систем и формирование в медико-биологической науке новых направлений (хрономедицна, хронофармакология, хронопатология и т.д.), ученые так и не выработали единый словарь для новой науки, в результате чего проявления хронобиологических феноменов нередко именуют неодинаково, а термины, уже закрепленные, применяют в ином смысле или пытаются пересмотреть более или менее устоявшиеся термины. В процессе ознакомления с предметом мы рассмотрим эти противоречия.

Понятия хронобиологии и биоритмологии близки, но не тождественны. Согласно наиболее универсальному определению, принятому Международным обществом изучения биологических ритмов, хронобиология - наука, объективно исследующая на количественной основе механизмы биологической временнóй структуры, включая ритмические проявления жизни на всех уровнях организации живой системы. Действительно, хотя изучение периодичности жизненных явлений образует основу хронобиологических подходов, не всегда принимается во внимание, что колебания сочетаются с более медленными изменениями, которые не обязательно периодичны.

Биоритмология - наука, изучающая условия возникновения, природу, закономерности и значение биологических ритмов. Биоритм представляет собой колебания какого-либо биологического процесса (состояния), наступающие через приблизительно равные промежутки времени, когда процесс (состояние) возвращается к исходному проходя цикл. Повторяемость состояния (например, деление клетки) в ритме относительна. На самом деле каждый цикл повторения по своему содержанию отличается от предыдущего, но воспроизводится по тем же закономерностям.

Понятия "цикл" и "ритм" близки, их употребление определяется семантическими оттенками, что зависит от контекста. Под цикличностью чаще имеют в виду только повторяемость событий, употребляя термин "ритм", обычно подразумевают, что, кроме периода, известны и другие его параметры.

Интенсивность процесса на протяжении цикла меняется по сложным и у разных процессов неодинаковым законам, так что кривые, ее отражающие (форма волны), имеют сложную конфигурацию, например конфигурация электрокардиограммы, для описания которой требуется привлечение теорий предельных циклов и релаксационных колебаний.

Простейшая кривая, описывающая циклы (ритмы), – это синусоида, характеризующаяся определенными параметрами , используемыми для описания биологического ритма.

Классификация биоритмов

Проявлением и характеристикой, позволяющей судить о временной организации человека, является его хронотип. Чаще всего под этим термином понимают околосуточную динамику показателей, характеризующих общее состояние организма. Хронотип человека индивидуален, т.к. обусловлен, с одной стороны генетическими механизмами, а с другой – взаимодействием организма со средой.

Чаще всего хронотип человека определяют по уровню работоспособности - активной фазы биологического ритма "сон-бодрствование". Различия в этом ритме позволили распределить людей на "утренние" группы ("жаворонки"), "вечерние" группы ("совы") и "аритмичные" группы ("голуби"). "Совы" – поздно засыпают и поздно просыпаются, максимум суточных биоритмов активности и покоя у них сдвинут на более поздние часы в отличии от "жаворонков", которые рано просыпаются и рано засыпают. У "голубей" пик активности приходится примерно на середину дневного периода. На протяжении жизни временная организация человека может меняться: с возрастом смещаться в сторону "жаворонка" Происходит это вследствие изменения скорости секреции гормонов (в частности, гормона мелатонина, отвечающего за нормальное ритмическое течение биологических процессов организма). Именно отсюда склонность пожилых рано вставать и пораньше ложиться, а у молодых - бодрствовать допоздна и утром подольше поспать.

Общие представления о биоритмах. Ритмичность процессов прослеживается во всем и везде: по закону ритма живут человек и вся окружающая его природа, Земля, Космос.

Когда-то природа «завела» биологические часы живого так, чтобы они шли в соответствии с присущей ей самой цикличностью. Смена дня и ночи, чередование времен года, вращение Луны вокруг Земли и Земли вокруг Солнца — изначальные условия развития организма. Биологический ритм стал общим принципом живого, закрепленным в наследственности, неотъемлемой чертой жизни, ее временной основой, ее регулятором.

Биоритмы — периодические изменения интенсивности и характера биологических процессов, которые самоподдерживаются и самовоспроизводятся в любых условиях.

Биоритмы характеризуются:

  • периодом — продолжительностью одного цикла колебаний в единицу времени;
  • частотой ритмов - частотой периодических процессов в единицу времени;
  • фазой - частью цикла, измеряемой в долях периода (начальная, конечная и т.д.);
  • амплитудой - размахом колебаний между максимумом и минимумом.

По продолжительности выделяют следующие циклы:

  • высокочастотные — продолжающиеся до 30 минут;
  • среднечастотные — от 0,5 до 24 часов, 20-28 часов и 29 часов — 6 суток;
  • низкочастотные — с периодом 7 суток, 20 суток, 30 суток, около одного года.

Таблица. Классификация биоритмов человека

Характеристика

Продолжительность

Ультрадианные (уровень работоспособности, гормональные сдвиги и др.)

Циркадианные (уровень работоспособности, интенсивность метаболизма и деятельности внутреннихорганов и др.)

Инфрадианные

28 ч — 4 суток

Околонедельные (циркасептанные) (например, уровень работоспособности)

7 ± 3 суток

Околомесячные (циркатригинтанные)

30 ± 5 суток

Ультраннулярные

Несколько месяцев

Цирканнуальные

Около одного года

Для человеческого организма характерен целый спектр ритмопроявляющихся процессов и функций, который объели- нен в единую согласованную во времени колебательную систему, обладающую следующими особенностями: наличием связи между ритмами разных процессов; наличием синхронности, или кратности, в протекании тех или других ритмов; наличием иерархичности (подчинением одних ритмов другим).

На рис. 1 представлена схема биоритмов, которая отражает часть спектра ритмов жизнедеятельности человека. (На самом деле в человеческом организме ритмично все: работа внутренних органов, тканей, клеток, электрическая активность мозга, обмен веществ.)

У человека выявлены и исследованы среди многих других четыре основных биологических ритма:

Полутора часовой ритм (от 90 до 100 минут) чередования нейрональной активности мозга как во время бодрствования, так и во время сна, являющийся причиной полуторачасовых колебаний умственной работоспособности и полуторачасовых циклов биоэлектрической активности мозга во время сна. Через каждые полтора часа человек испытывает попеременно то низкую, то повышенную возбудимость, то умиротворенность, то беспокойство;

Месячный ритм. Месячной цикличности подчинены определенные изменения в организме женщины. Недавно установлен околомесячный ритм работоспособности и настроения мужчин;

Годовой ритм. Отмечаются циклические изменения организма ежегодно во время смены времен года. Установлено, что в разное время года различно содержание гемоглобина и холестерина в крови; мышечная возбудимость выше весной и летом и слабее осенью и зимой, максимальная светочувствительность глаза тоже наблюдается весной и ранним летом, а к осени и зиме падает.

Высказываются предположения, что существуют ритмы 2-, 3- и 11-летние — 22-летние, наиболее вероятной считается связь их с метеорологическими и гелиогеографическими явлениями, обладающими примерно такой же цикличностью.

Кроме ритмов, приведенных выше, жизнь человека подчиняется социальным ритмам. К ним люди приучаются постоянно. Один из них — недельный. Дробя в течение многих веков каждый месяц на недели — шесть рабочих дней, один день для отдыха, человек сам приучил себя к нему. Этот режим, не существующий в природе и появившийся в результате социальных причин, стал неотъемлемой меркой жизни человека и общества. В недельном цикле меняется прежде всего работоспособность. Причем одинаковая закономерность прослеживается у групп населения, различающихся по возрасту и характеру труда: у рабочих и инженеров на промышленных предприятиях, у школьников и студентов. Понедельник начинается с относительно низкой работоспособности, от вторника к четвергу — самый гребень недели — она набирает максимальный подъем, а с пятницы опять падает.

Рис. 1. Ритмы жизнедеятельности человека

Биологическое значение биоритмов. Биоритмы выполняют в организме человека по крайней мере четыре основные функции.

Первая функция — оптимизация жизнедеятельности организма. Цикличность — базисное правило поведения биосистем, необходимое условие их функционирования. Это связано с тем, что биологические процессы не могут интенсивно протекать длительное время; они представляют собой чередование максимума и минимума, ибо доведение функции до максимума лишь в определенные фазы каждого периода цикла экономнее, чем стабильное непрерывное поддержание такого максимума. В биосистемах за всякой активностью должно следовать ее снижение для отдыха и восстановления.

Поэтому принцип ритмической смены активности, при которой происходит расход энергетических и пластических ресурсов, и ее торможения, предназначенного для восстановления этих расходов, изначально заложен при возникновении (рождении) любой биологической системы, включая человека.

Вторая функция — отражение фактора времени. Биоритмы — биологическая форма преобразования шкалы объективного, астрономического времени в субъективное, биологическое время. Целью его является соотнесение циклов жизненных процессов с циклами объективного времени. Основными характеристиками биологического времени как особой формы движущейся материи являются его независимость от нашего сознания и взаимосвязь его с физическим временем. Благодаря этому осуществляются временная организация биологических процессов в организме и согласование их с периодами колебаний внешней среды, что обеспечивает адаптацию организма к окружающей среде и отражает единство живой и неживой природы.

Третья функция — регуляторная. Ритмование — это рабочий механизм создания функциональных систем в центральной нервной системе (ЦНС) и базисный принцип регуляции функций. Согласно современным представлениям, создание рабочих механизмов в ЦНС обеспечивается синхронизацией ритмической высокочастотной деятельности составляющих ее нервных клеток. Таким образом осуществляется объединение отдельных нервных клеток в рабочие ансамбли, а ансамблей — в общую синхронную функциональную систему. Ритмование разрядов мозга имеет принципиальное значение для преобладания главной в данный момент реакции среди прочих. Так создается доминанта, господствующая в данное время функциональная система ЦНС. Она объединяет в едином ритме различные центры и определяет текущую последовательную их деятельность путем навязывания «своего» ритма. Так в структурах мозга создаются нервные программы, определяющие поведение.

Четвертая функция — интеграционная (объединительная). Биоритм — это рабочий механизм объединения всех уровней организации организма в единую суперсистему. Интеграция реализуется по принципу иерархичности: высокочастотные ритмы низкого уровня организации подчиняются средне- и низкочастотным уровням более высокого уровня организации. Иначе говоря, высокочастотные биоритмы клеток, тканей, органов и систем организма подчиняются базовому среднечастотному суточному ритму. Это объединение осуществляется по принципу кратности.

Общая характеристика биоритмов

Жизнь человека неразрывно связана с фактором времени. Одна из эффективных форм приспособления организма к внешней среде — ритмичность физиологических функций.

Биоритм — автоколебательный процесс в биологической системе, характеризующийся последовательным чередованием фаз напряжения и расслабления, когда тот или иной параметр последовательно достигает максимального или минимального значения. Закон, по которому происходит этот процесс, может быть описан различными функциями, а в самом простом варианте — синусоидальной кривой.

К настоящему времени у человека и животных описано около 400 биоритмов. Естественно, что возникла необходимость их классифицировать. Предложено несколько принципов классификации биоритмов. Чаще всего классифицируют их на основании частоты колебаний (осцилляции), или периодов. Выделяют следующие основные ритмы:

  • Высокой частоты, или микроритмы (от долей секунды до 30 мин). Примером могут служить осцилляции на молекулярном уровне (синтез и распад АТФ и др.), частота сокращений сердца (ЧСС), частота дыхания, периодичность перистальтики кишечника.
  • Средней частоты (от 30 мин до 28 ч). В эту группу входят ультрадианные (до 20 ч) и циркадные, или циркадианные (околосуточные — 20-28 ч) ритмы. Пример — чередование сна и бодрствования. Циркадианный ритм является основным ритмом физиологических функций человека.
  • Мезоритмы (длительностью от 28 ч до 6-7 дней). Сюда относятся циркасептальные ритмы (около 7 дней). С ними связана работоспособность человека, они в значительной степени обусловлены социальным фактором — рабочей неделей с отдыхом на 6-7-й день.
  • Макроритмы (от 20 дней до I года). К ним относятся циркануальные (цирканные), или окологодовые ритмы. В эту группу входят сезонные и околомесячные ритмы (лунный ритм, овариально-менструальный цикл у женщин и т.д.).
  • Мегаритмы (длительностью в десяток или многие десятки лет). Наиболее известный из них — 11-летний ритм активности Солнца, с которым связаны некоторые процессы на Земле — инфекционные заболевания человека и животных (эпидемии и эпизоотии).

Характеристику каждого биоритма можно описать методами математического анализа и изобразить графически. В последнем случае речь идет о биоритмограмме, или хронограмме.

Как видно из рис. 2, биоритмограмма имеет синусоидальный характер. В ней различают временной период, фазы напряжения и расслабления, амплитуду напряжения, амплитуду расслабления, ак- рофазу данного биоритма.

Временной период — важнейшая характеристика биоритма. Это отрезок времени, по истечении которого происходит повторение функции или состояния организма.

Рис. 2. Схема биоритмограммы на примере циркадного ритма ЧСС: 1 — временной период (сутки); 2 — фаза напряжения (день); 3 — фаза расслабления (ночь); 4 — амплитуда напряжения; 5 — амплитуда расслабления; 6 — акрофаза

Фазы напряжении и расслабления характеризуют усиление и снижение функции в течение суток.

Амплитуда — разница между максимальной и минимальной выраженностью функции в дневное (амплитуда напряжения) и ночное (амплитуда расслабления) время. Общая амплитуда — разница между максимальной и минимальной выраженностью функции в рамках всего суточного цикла.

Акрофаза — время, на которое приходится наивысшая точка (максимальный уровень) данного биоритма.

В некоторых случаях кривая приобретает уплощенный или платообразный вид. Это встречается при малой амплитуде напряжения. Другими разновидностями являются инвертированные и двухвершинные биоритмограммы. Инвертированные кривые характеризуются снижением исходного уровня в дневное время, т.е. изменением функции в направлении, противоположном обычному. Это неблагоприятный признак.

Двухвершинные кривые отличаются двумя пиками активности в течение дня. Появление второго пика рассматривается в настоящее время как проявление адаптации к условиям существования. Так, например, первый пик работоспособности человека (11 — 13 ч) — это естественное проявление биоритма, связанное с дневной активностью. Второй подъем работоспособности, наблюдаемый в вечерние часы, обусловлен необходимостью выполнения домашних и других обязанностей.

Происхождение и регуляция биоритмов

Происхождение биоритмов определяется двумя факторами — эндогенным (внутренним, врожденным) и экзогенным (внешним, приобретенным).

Постоянные циклические колебания в различных системах организма складывались в процессе длительной эволюции, и теперь они являются врожденными. К ним относятся многие функции: ритмическая работа сердца, дыхательной системы, мозга и т.д. Эти ритмы называют физиологическими. Выдвинуто несколько гипотез эндогенной природы биоритмов. Наибольшее число сторонников имеет мультиосцилляторная теория, согласно которой в пределах многоклеточного организма (человека) может функционировать главный (центральный) водитель ритма (биологические часы), навязывающий свой ритм всем остальным системам, не способным генерировать собственные колебательные процессы. Наряду с центральным водителем ритма возможно существование второстепенных осцилляторов, иерархически подчиненных ведущему.

Биоритмы, зависящие от циклических изменений окружающей среды, являются приобретенными, и их называют экологическими. Эти ритмы испытывают большое влияние космических факторов: вращение Земли вокруг своей оси (солнечные сутки), энергетическое влияние Луны и циклических изменений активности Солнца.

Биоритмы в организме складываются из эндогенного — физиологического и экзогенного — экологического ритмов. Средняя частота ритмов обусловлена сочетанием эндогенных и экзогенных факторов.

Считается, что центральным водителем ритма является эпифиз (железа внутренней секреции, находящаяся в промежуточном мозге). Однако у человека эта железа функционирует только до 15-16 лет. По мнению многих ученых, роль центрального синхронизатора (биологических часов) у человека берет на себя область головного мозга, называемая гипоталамусом.

Контроль смены состояния бодрствования и сна зависит в значительной степени от светового фактора и обеспечивается связями коры головного мозга и таламуса (центр, в котором собираются импульсы от всех органов чувств), а также активизирующими восходящими влияниями ретикулярной формации (сетчатые структуры мозга, выполняющие активизирующую функцию). Важную роль играют прямые связи сетчатки глаза с гипоталамусом.

Прямые и опосредованные связи коры головного мозга и гипоталамических структур обеспечивают возникновение системы гормонального контроля периферической регуляции, действующей на всех уровнях — от субклеточного до организменного.

Таким образом, в основе временной организации живой материи лежит эндогенная природа биоритмов , коррегируемая экзогенными факторами. Устойчивость эндогенного компонента биологических часов создается взаимодействием нервной и гуморальной (лат. humor- жидкость; здесь — кровь, лимфа, тканевая жидкость) систем. Слабость одного из этих звеньев может привести к (нарушению биоритмов) и последующим нарушениям функций.

Исследователями доказано, что для постоянного совершенствования и тренировки приспособительных механизмов организм периодически должен испытывать стресс, определенный конфликт с окружающей его физической и социальной средой. Если учесть, что периодичность заложена в самой природе живых систем, то становится ясным, что именно такое динамическое взаимодействие организма со средой обеспечивает его стабильность и устойчивую жизнеспособность. Основу всякой активной деятельности составляют процессы интенсивного расходования жизненных ресурсов организма, и в то же время эти реакции являются мощным стимулом для еще более интенсивных восстановительных процессов. Можно утверждать, что динамическая синхронизация — взаимодействие эндогенных и экзогенных ритмов — придает организму живучесть и устойчивость.

Биологические ритмы

Все живое на нашей планете несет отпечаток ритмического рисунка событий, характерного для нашей Земли. В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек. Биологический ритм представляет собой один из важнейших инструментов исследования фактора времени в деятельности живых систем и их временной организации.

Биологические ритмы или биоритмы - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях. [

Выделим следующие важные достижения хронобиологии:

1. Биологические ритмы обнаружены на всех уровнях организации живой природы - от одноклеточных до биосферы. Это свидетельствует о том, что биоритмика - одно из наиболее общих свойств живых систем.

2. Биологические ритмы признаны важнейшим механизмом регуляции функций организма, обеспечивающим гомеостаз, динамическое равновесие и процессы адаптации в биологических системах.

3. Установлено, что биологические ритмы, с одной стороны, имеют эндогенную природу и генетическую регуляцию, с другой, их осуществление тесно связано с модифицирующим фактором внешней среды, так называемых датчиков времени. Эта связь в основе единства организма со средой во многом определяет экологические закономерности.

4. Сформулированы положения о временной организации живых систем, в том числе - человека - одним из основных принципов биологической организации. Развитие этих положений очень важно для анализа патологических состояний живых систем.

5. Обнаружены биологические ритмы чувствительности организмов к действию факторов химической (среди них лекарственные средства) и физической природы. Это стало основой для развития хронофармакологии, т.е. способов применения лекарств с учетом зависимости их действия от фаз биологических ритмов функционирования организма и от состояния его временной организации, изменяющейся при развитии болезни.

6. Закономерности биологических ритмов учитывают при профилактике, диагностике и лечении заболеваний.

Биоритмы подразделяются на физиологические и экологические. Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы давления, биения сердца и артериального давления. Имеются данные о влиянии, например, магнитного поля Земли на период и амплитуду энцефалограммы человека.

Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды. К ним относятся суточные, сезонные (годовые), приливные и лунные ритмы. Благодаря экологическим ритмам, организм ориентируется во времени и заранее готовится к ожидаемым условиям существования. Так, некоторые цветки раскрываются незадолго до рассвета, как будто зная, что скоро взойдет солнце. Многие животные еще до наступления холодов впадают в зимнюю спячку или мигрируют. Таким образом, экологические ритмы служат организму как биологические часы.

Ритм - это универсальное свойство живых систем. Процессы роста и развития организма имеют ритмический характер. Ритмическим изменениям могут быть подвержены различные показатели структур биологических объектов: ориентация молекул, третичная молекулярная структура, тип кристаллизации, форма роста, концентрация ионов и т. д. Установлена зависимость суточной периодики, присущей растениям, от фазы их развития. В коре молодых побегов яблони был выявлен суточный ритм содержания биологически активного вещества флоридзина, характеристики которого менялись соответственно фазам цветения, интенсивного роста побегов и т. д. Одно из наиболее интересных проявлений биологического измерения времени - суточная периодичность открывания и закрывания цветков и растений. Каждое растение "засыпает" и "просыпается" в строго определенное время суток. Рано утром (в 4 часа) раскрывают свои цветки цикорий и шиповник, в 5 часов - мак, в 6 часов - одуванчик, полевая гвоздика, в 7 часов - колокольчик, огородный картофель, в 8 часов бархатцы и вьюнки, в 9-10 часов - ноготки, мать-и-мачеха. Существуют и цветы, раскрывающие свои венчики ночью. В 20 часов раскрываются цветки душистого табака, а в 21 час - горицвета и ночной фиалки. Так же в строго определенное время и закрываются цветки: в полдень - осот полевой, в 13-14 часов - картофель, в 14-15 часов -одуванчик, в 15-16 часов - мак, в 16-17 часов -ноготки, в 17-18 часов мать-и-мачеха, в 18-19 часов - лютик, в 19-20 часов - шиповник. Раскрытие и закрытие цветков зависит и от многих условий, например, от географического положения местности или времени восхода и заката солнца.

Существуют ритмические изменения чувствительности организма к повреждающим факторам внешней среды. В опытах на животных было установлено, что чувствительность к химическим и лучевым поражениям колеблется в течение суток очень заметно: при одной и той же дозе смертность мышей в зависимости от времени суток варьировала от 0 до 10 %

Важнейшим внешним фактором, влияющим на ритмы организма, является фотопериодичность. У высших животных предполагается существование двух способов фотопериодической регуляции биологических ритмов: через органы зрения и далее через ритм двигательной активности организма и путем экстрасенсорного восприятия света. Существует несколько концепций эндогенного регулирования биологических ритмов: генетическая регуляция, регуляция с участием клеточных мембран. Большинство ученых склоняются к мнению о полигенном контроле над ритмами. Известно, что в регуляции биологических ритмов принимают участие не только ядро, но и цитоплазма клетки.

Центральное место среди ритмических процессов занимает циркадианный ритм, имеющий наибольшее значение для организма. Понятие циркадианного (околосуточного) ритма ввел в 1959 году Халберг. Циркадианный ритм является видоизменением суточного ритма с периодом 24 часа, протекает в константных условиях и принадлежит к свободно текущим ритмам. Это ритмы с не навязанным внешними условиями периодом. Они врожденные, эндогенные, т.е. обусловлены свойствами самого организма. Период циркадианных ритмов длится у растений 23-28 часов, у животных 23-25 часов. Поскольку организмы обычно находятся в среде с циклическими изменениями ее условий, то ритмы организмов затягиваются этими изменениями и становятся суточными.

Циркадианные ритмы обнаружены у всех представителей животного царства и на всех уровнях организации - от клеточного давления до межличностных отношений. В многочисленных опытах на животных установлено наличие циркадианных ритмов двигательной активности, температуры тела и кожи, частоты пульса и дыхания, кровяного давления и диуреза. Суточным колебаниям оказались подвержены содержания различных веществ в тканях и органах, например, глюкозы, натрия и калия в крови, плазмы и сыворотки в крови, гормонов роста и др. По существу, в околосуточном ритме колеблются все показатели эндокринные и гематологические, показатели нервной, мышечной, сердечно-сосудистой, дыхательной и пищеварительной систем. В этом ритме содержание и активность десятков веществ в различных тканях и органах тела, в крови, моче, поте, слюне, интенсивность обменных процессов, энергетическое и пластическое обеспечение клеток, тканей и органов. Этому же циркадианному ритму подчинены чувствительность организма к разнообразным факторам внешней среды и переносимость функциональных нагрузок. Всего к настоящему времени у человека выявлено около 500 функций и процессов, имеющих циркадианную ритмику.

Биоритмы организма - суточные, месячные, годовые - практически остались неизменными с первобытных времен и не могут угнаться за ритмами современной жизни. У каждого человека в течение суток четко прослеживаются пики и спады важнейших жизненных систем. Важнейшие биоритмы могут быть зафиксированы в хронограммах. Основными показателями в них служат температура тела, пульс, частота дыхания в покое и другие показатели, которые можно определить только при помощи специалистов. Знание нормальной индивидуальной хронограммы позволяет выявить опасности заболевания, организовать свою деятельность в соответствии с возможностями организма, избежать срывов в его работе.

Самую напряженную работу надо делать в те часы, когда главнейшие системы организма функционируют с максимальной интенсивностью. Если человек "голубь", то пик работоспособности приходится на три часа дня. Если "жаворонок" - то время наибольшей активности организма падает на полдень. "Совам" рекомендуется самую напряженную работу выполнять в 5-6 часов вечера.

О влиянии 11-летнего цикла солнечной активности на биосферу Земли сказано много. Но не все знают о тесной зависимости, существующей между фазой солнечного цикла и антропометрическими данными молодежи. Киевские исследователи провели статистический анализ показателей массы тела и роста юношей, приходивших на призывные участки. Оказывается, что акселерация весьма подвержена солнечному циклу: тенденция к повышению модулируется волнами, синхронными с периодом "переполюсовки " магнитного поля Солнца (а это удвоенный 11-летний цикл, т.е. 22 года). Кстати, в деятельности Солнца выявлены и более длительные периоды, охватывающие несколько столетий.

Важное практическое значение имеет также исследование других многодневных (околомесячных, годовых и пр.) ритмов, датчиком времени для которых являются такие периодические изменения в природе, как смена сезонов, лунные циклы и др.

В последние годы широкую популярность приобрела теория "трех ритмов", в основе которой лежит теория о полной независимости этих многодневных ритмов как от внешних факторов, так и от возрастных изменений самого организма. Пусковым механизмом этих исключительных ритмов является только момент рождения (по другим вариантам - момент зачатия) человека. Родился человек, и возникли ритмы с периодом в 23, 28 и 33 суток, определяющие уровень его физической, эмоциональной и интеллектуальной активности. Графическим изображением этих ритмов является синусоида. Однодневные периоды, в которые происходит переключение фаз ("нулевые" точки на графике) и которые якобы отличаются снижением соответствующего уровня активности, получили название критических дней. Если одну и ту же "нулевую" точку пересекают одновременно две или три синусоиды, то такие "двойные " или "тройные " критические дни особенно опасны.

Многократные исследования, проведенные с целью проверки этой гипотезы, не подтвердили, однако, существование этих сверхуникальных биоритмов. Сверхуникальных потому, что у животных аналогичных ритмов не выявлено; никакие известные биоритмы не укладываются в идеальную синусоиду; периоды биоритмов не постоянны и зависят как от внешних условий, так и от возрастных изменений; в природе не обнаружено явлений, которые являлись бы синхронизаторами для всех людей и в то же время были "персонально " зависимы от дня рождения каждого человека.

Специальные исследования колебаний функционального состояния людей показали, что они никак не связаны с датой рождения. Подобные исследования спортсменов, проведенные в нашей стране, в США и других странах, не подтвердили связи уровня работоспособности и спортивных результатов с ритмами, предлагаемыми в гипотезе. Показано отсутствие всякой связи различных несчастных случаев на производстве, аварий и других дорожно-транспортных происшествий с критическими днями людей - виновников этих событий. Проверены также методы статистической обработки данных, свидетельствовавших якобы о наличии трех ритмов, и установлена ошибочность этих методов. Таким образом, гипотеза "трех биоритмов " не находит подтверждения. Однако ее появление и разработка имеют положительное значение, так как привлекли внимание к актуальной проблеме - исследованию многодневных биоритмов, отражающих влияние на живые организмы космических факторов (Солнца, Луны, других планет) и играющих важную роль в жизни и деятельности человека.

Многие биологические процессы в природе протекают ритмично, т.е. разные состояния организма чередуются с достаточно четкой периодичностью. Примеры быстрых ритмов - сокращения сердца или дыхательные движения с периодом всего в несколько секунд. У других жизненно важных ритмов, например чередования бодрствования и сна, период составляет около суток. Если биологические ритмы синхронизированы с наступлением приливов и отливов (каждые 12,4 часа) или только одной из этих фаз (каждые 24,8 часа), их называют приливными. У лунных биологических ритмов период соответствует продолжительности лунного месяца, а у годичных - года. Сердечные сокращения и другие формы быстрой ритмичной активности, не коррелирующей с естественными изменениями в окружающей среде, обычно изучаются физиологией и в этой статье рассмотрены не будут.

Биологические ритмы интересны тем, что во многих случаях сохраняются даже при постоянстве условий среды. Такие ритмы называют эндогенными, т.е. «идущими изнутри»: хотя обычно они и коррелируют с ритмичными изменениями внешних условий, например чередованием дня и ночи, их нельзя считать прямой реакцией на эти изменения. Эндогенные биологические ритмы обнаружены у всех организмов, кроме бактерий. Внутренний механизм, поддерживающий эндогенный ритм, т.е. позволяющий организму не только чувствовать течение времени, но и измерять его промежутки, называется биологическими часами.

Работа биологических часов сейчас хорошо изучена, однако внутренние процессы, лежащие в ее основе, остаются загадкой. В 1950-х годах советский химик Б.Белоусов доказал, что даже в однородной смеси некоторые химические реакции могут периодически ускоряться и замедляться. Аналогичным образом, спиртовое брожение в дрожжевых клетках то активируется, то подавляется с периодичностью ок. 30 секунд. Каким-то образом эти клетки взаимодействуют друг с другом, так что их ритмы синхронизируются и вся дрожжевая суспензия дважды в минуту «пульсирует».

Считается, что такова природа всех биологических часов: химические реакции в каждой клетке организма протекают ритмично, клетки «подстраиваются» друг под друга, т.е. синхронизируют свою работу, и в результате пульсируют одновременно. Эти синхронизированные действия можно сравнить с периодическими колебаниями часового маятника.

Циркадианные ритмы . Большой интерес представляют биологические ритмы с периодом около суток. Они так и называются - околосуточными, циркадианными или циркадными - от лат. circa - около и dies - день.

Биологические процессы с циркадианной периодичностью весьма разнообразны. Например, три вида светящихся грибов усиливают и ослабляют свое свечение каждые 24 часа, даже если искусственно держать их при постоянном свете или в полной темноте. Ежесуточно изменяется свечение одноклеточной морской водоросли

Gonyaulax . У высших растений в циркадианном ритме протекают различные метаболические процессы, в частности фотосинтез и дыхание. У черенков лимона с 24-часовой периодичностью колеблется интенсивность транспирации. Особенно наглядные примеры - ежесуточные движения листьев и раскрывания-закрывания цветков.

Разнообразные циркадианные ритмы известны и у животных. Примером может служить близкое к актиниям кишечнополостное - морское перо (

Cavernularia obesa ), представляющее собой колонию из множества крошечных полипов. Морское перо живет на песчаном мелководье, втягиваясь в песок днем и разворачиваясь по ночам, чтобы питаться фитопланктоном. Этот ритм сохраняется в лаборатории при неизменных условиях освещения.

Четко работают биологические часы у насекомых. Например, пчелы знают, когда раскрываются определенные цветки, и навещают их ежедневно в одно и то же время. Пчелы также быстро усваивают, в какое время им выставляют на пасеке сахарный сироп.

У человека не только сон, но и многие другие функции подчинены суточному ритму. Примеры тому - повышение и понижение кровяного давления и выделения калия и натрия почками, колебания времени рефлекса, потливости ладоней и т.д. Особенно заметны изменения температуры тела: ночью она примерно на 1

° С ниже, чем днем. Биологические ритмы у человека формируются постепенно в ходе индивидуального развития. У новорожденного они довольно неустойчивы - периоды сна, питания и т.д. чередуются бессистемно. Регулярная смена периодов сна и бодрствования на основе 24 - 25 часового цикла начинает происходить только с 15-недельного возраста. Корреляция и «настройка» . Хотя биологические ритмы и эндогенны, они соответствуют изменениям внешних условий, в частности смене дня и ночи. Эта корреляция обусловлена т.н. «захватыванием». Например, циркадианные движения листьев у растений сохраняются в полной темноте лишь несколько суток, хотя другие цикличные процессы могут продолжать повторяться сотни раз несмотря на постоянство внешних условий. Когда выдерживаемые в темноте листья фасоли, наконец, прекратили расправляться и опускаться, достаточно короткой вспышки света, чтобы этот ритм восстановился и продержался еще несколько суток. У циркадианных ритмов животных и растений времязадающим стимулом обычно служит изменение освещенности - на рассвете и вечером. Если такой сигнал повторяется периодически и с частотой, близкой к свойственной данному эндогенному ритму, происходит точная синхронизация внутренних процессов организма с внешними условиями. Биологические часы «захватываются» окружающей периодичностью.

Изменяя наружный ритм по фазе, например включая свет на ночь и поддерживая днем темноту, можно «перевести» биологические часы так же, как обычные, хотя такая перестройка требует некоторого времени. Когда человек переезжает в другой часовой пояс, его ритм сна-бодрствования меняется со скоростью два-три часа в сутки, т.е. к разнице в 6 часов он приспосабливается только через два-три дня.

В определенных пределах можно перенастроить биологические часы и на цикл, отличающийся от 24 часов, т.е. заставить их идти с другой скоростью. Например, у людей, долгое время живших в пещерах с искусственным чередованием светлых и темных периодов, сумма которых существенно отличалась от 24 часов, ритм сна и других циркадианных функций подстраивался к новой продолжительности «суток», составлявшей от 22 до 27 часов, однако сильнее изменить его было уже невозможно. То же самое относится и к другим высшим организмам, хотя многие растения могут приспосабливаться к «суткам», продолжительность которых составляет целую часть обычных, например 12 или

8 часов. Приливные и лунные ритмы . У прибрежных морских животных часто наблюдаются приливные ритмы, т.е. периодические изменения активности, синхронизированные с подъемом и спадом воды. Приливы обусловлены лунным притяжением, и в большинстве регионов планеты происходит два прилива и два отлива в течение лунных суток (периода времени между двумя последовательными восходами Луны.) Поскольку Луна движется вокруг Земли в том же направлении, что и наша планета вокруг собственной оси, лунные сутки примерно на 50 минут длиннее солнечных, т.е. приливы наступают каждые 12,4 часа. Такой же период у приливных ритмов. Например, рак-отшельник прячется от света в отлив и выходит из тени в прилив; с наступлением прилива устрицы приоткрывают свои раковины, разворачивают щупальцы актинии и т.п. Многие животные, в том числе некоторые рыбы, в прилив потребляют больше кислорода. С подъемом и спадом воды синхронизированы изменения окраски манящих крабов.

Многие приливные ритмы сохраняются, иногда в течение нескольких недель, даже если держать животных в аквариуме. Значит, по сути своей они эндогенные, хотя в природе «захватываются» и подкрепляются изменениями во внешней среде.

У некоторых морских животных размножение коррелирует с фазами Луны и происходит обычно один раз (реже - дважды) на протяжении лунного месяца. Польза такой периодичности для вида очевидна: если яйца и сперма выбрасываются в воду всеми особями одновременно, шансы на оплодотворение достаточно высоки. Этот ритм эндогенный и, как считается, задается «пересечением» 24-часового циркадианного ритма с приливным, период которого 12,4 или 24,8 часа. Такое «пересечение» (совпадение) происходят с интервалами 14

- 15 и 29-30 суток, что соответствует лунному циклу.

Лучше всего известен и, вероятно, наиболее заметен среди приливных и лунных ритмов тот, что связан с размножением груниона - морской рыбы, мечущей икру на пляжах Калифорнии. В течение каждого лунного месяца наблюдаются два особенно высоких - сизигийных - прилива, когда Луна находится на одной оси с Землей и Солнцем (между ними или с противоположной от светила стороны). Во время такого прилива грунион нерестится, закапывая икринки в песок у самого края воды. В течение двух недель они развиваются практически на суше, куда не могут добраться морские хищники. В следующий сизигийный прилив, когда вода покрывает буквально нашпигованный ими песок, из всех икринок за несколько секунд вылупляются мальки, тут же уплывающие в море. Очевидно, что такая стратегия размножения возможна, только если взрослые грунионы чувствуют время наступления сизигийных приливов.

Менструальный цикл у женщин длится четыре недели, хотя не обязательно синхронизирован с фазами луны. Тем не менее, как показывают эксперименты, и в этом случае можно говорить о лунном ритме. Сроки менструаций легко сдвинуть, использовав, например, специальную программу искусственного освещения; однако они будут наступать с периодичностью, очень близкой к 29,5 суток, т.е. к лунному месяцу.

Низкочастотные ритмы . Биологические ритмы с периодами, намного превышающими один месяц, трудно объяснить на основе биохимических флуктуаций, которыми, вероятно, обусловлены ритмы циркадианные, и механизм их пока неизвестен. Среди таких ритмов наиболее очевидны годичные. Если деревья умеренного пояса пересадить в тропики, они некоторое время будут сохранять цикличность цветения, сбрасывания листьев и периода покоя. Рано или поздно эта ритмичность нарушится, продолжительность фаз цикла будет все более неопределенной и в конечном итоге исчезнет синхронизация биологических циклов не только разных экземпляров одного и того же вида, но даже разных ветвей одного дерева.

В тропических областях, где условия среды практически постоянны в течение всего года, местным растениям и животным часто свойственны долговременные биологические ритмы с периодом, отличным от 12 месяцев. Например, цветение может наступать каждые 8 или 18 месяцев. По-видимому, годичный ритм - это адаптация к условиям умеренной зоны.

Значение биологических часов . Биологические часы полезны организму прежде всего потому, что позволяют ему приспосабливать свою активность к периодическим изменениям в окружающей среде. Например, краб, избегающий света во время отлива, автоматически будет искать убежище, которое защитит его от чаек и других хищников, добывающих пищу на обнажившемся из-под воды субстрате. Чувство времени, присущее пчелам, координирует их вылет за пыльцой и нектаром с периодом раскрывания цветков. Аналогичным образом, циркадианный ритм подсказывает глубоководным морским животным, когда наступает ночь и можно подняться ближе к поверхности, где больше пищи.

Кроме того, биологические часы позволяют многим животным находить направление, пользуясь астрономическими ориентирами. Это возможно, только если известно одновременно положение небесного тела и время суток. Например, в Северном полушарии солнце в полдень находится точно на юге. В другие часы, чтобы определить южное направление, надо, зная положение солнца, сделать угловую поправку, зависящую от местного времени. Используя свои биологические часы, некоторые птицы, рыбы и многие насекомые регулярно выполняют такие «расчеты».

Не приходится сомневаться, что перелетным птицам, чтобы находить дорогу к мелким островам в океане, требуются навигационные способности. Вероятно, они используют свои биологические часы для определения не только направления, но и географических координат.

См. также ПТИЦЫ.

Проблемы, связанные с навигацией, встают не только перед птицами. Регулярные длительные миграции совершают тюлени, киты, рыбы и даже бабочки.

Практическое применение биологических ритмов . Рост и цветение растений зависят от взаимодействия между их биологическими ритмами и изменениями средовых факторов. Например, цветение стимулируется главным образом продолжительностью светлого и темного периодов суток на определенных стадиях развития растения. Это позволяет отбирать культуры, пригодные для тех или иных широт и климатических условий, а также выводить новые сорта. В то же время известны успешные попытки изменения биологических ритмов растений в нужном направлении. Например, птицемлечник аравийский (Ornithogallum arabicum ), цветущий обычно в марте, можно заставить распускаться под Рождество - в декабре.

С распространением дальних воздушных путешествий многие столкнулись с феноменом десинхронизации. Пассажир реактивного самолета, быстро пересекающий несколько часовых поясов, обычно испытывает чувство усталости и дискомфорта, связанное с «переводом» своих биологических часов на местное время. Сходная десинхронизация наблюдается у людей, переходящих из одной рабочей смены в другую. Большинство отрицательных эффектов обусловлено при этом присутствием в организме человека не одних, а многих биологических часов. Обычно это незаметно, поскольку все они «захватываются» одним и тем же суточным ритмом смены дня и ночи. Однако при сдвиге его по фазе скорость перенастройки различных эндогенных часов неодинакова. В результате сон наступает, когда температура тела, скорость выделения почками калия и другие процессы в организме еще соответствуют уровню бодрствования. Такое рассогласование функций в период адаптации к новому режиму ведет к повышенной утомляемости.

Накапливается все больше данных, свидетельствующих о том, что длительные периоды десинхронизации, например при частых перелетах из одного часового пояса в другой, вредны для здоровья, однако насколько велик этот вред, пока не ясно. Когда сдвига по фазе избежать нельзя, десинхронизацию можно свести к минимуму, правильно подобрав скорость наступления сдвига.

Биологические ритмы имеют очевидное значение для медицины. Хорошо известно, например, что восприимчивость организма к различным вредным воздействиям колеблется в зависимости от времени суток. В опытах по введению мышам бактериального токсина показано, что в полночь его смертельная доза выше, чем в полдень. Аналогичным образом изменяется чувствительность этих животных к алкоголю и рентгеновскому облучению. Восприимчивость человека тоже колеблется, однако в противофазе: его организм беззащитнее всего в полночь. Ночью смертность прооперированных больных втрое выше, чем днем. Это коррелирует с колебаниями температуры тела, которая у человека максимальна днем, а у мышей - ночью.

Такие наблюдения наводят на мысль, что лечебные процедуры следует согласовывать с ходом биологических часов, и определенные успехи здесь уже достигнуты. Трудность в том, что биологические ритмы человека, особенно больного, пока недостаточно исследованы. Известно, что при многих заболеваниях

- от рака до эпилепсии - они нарушаются; яркий тому пример - непредсказуемые колебания температуры тела у больных. Пока биологические ритмы и их изменения как следует не изучены, использовать их на практике, очевидно, нельзя. К этому стоит добавить, что в некоторых случаях десинхронизация биологических ритмов может быть не только симптомом болезни, но и одной из ее причин. ЛИТЕРАТУРА Биологические ритмы , тт. 1-2. М., 1984