Скалярная физика. Приложение

Величины называются скалярными (скалярами), если они после выбора единицы измерения полностью характеризуются одним числом. Примерами скалярных величин являются угол, поверхность, объем, масса, плотность, электрический заряд, сопротивление, температура.

Следует различать два типа скалярных величин: чистые скаляры и псевдоскаляры.

3.1.1. Чистые скаляры.

Чистые скаляры полностью определяются одним числом, не зависящим от выбора осей отсчета. Примером чистых скаляров могут служить температура и масса.

3.1.2. Псевдоскаляры.

Как и чистые скаляры, псевдоскаляры определяются с помощью одного числа, абсолютная величина которого не зависит от выбора осей отсчета. Однако знак этого числа зависит от выбора положительных направлений на осях координат.

Рассмотрим, например, прямоугольный параллелепипед, проекции ребер которого на прямоугольные оси координат соответственно равны Объем этого параллелепипеда определяется с помощью определителя

абсолютная величина которого не зависит от выбора прямоугольных осей координат. Однако, если переменить положительное направление на одной из осей координат, то определитель изменит знак. Объем - это псевдоскаляр. Псевдоскалярами являются также угол, площадь, поверхность. Ниже (п. 5.1.8) мы увидим, что псевдоскаляр представляет собой в действительности тензор особого рода.

Векторные величины

3.1.3. Ось.

Ось - это бесконечная прямая, на которой выбрано положительное направление. Пусть такая прямая, а направление от

считается положительным. Рассмотрим отрезок на этой прямой и положим, что число, измеряющее длину равно а (рис. 3.1). Тогда алгебраическая длина отрезка равна а, алгебраическая длина отрезка равна - а.

Если взять несколько параллельных прямых, то, определив положительное направление на одной из них, мы тем самым определяем его на остальных. Иначе обстоит дело, если прямые не параллельны; тогда нужно специально уславливаться относительно выбора положительного направления для каждой прямой.

3.1.4. Направление вращения.

Пусть ось. Вращение относительно оси назовем положительным или прямым, если оно осуществляется для наблюдателя, стоящего вдоль положительного направления оси, справа и налево (рис. 3.2). В противном случае оно называется отрицательным или обратным.

3.1.5. Прямые и обратные трехгранники.

Пусть некоторый трехгранник (прямоугольный или непрямоугольный). Положительные направления выбраны на осях соответственно от О к х, от О к у и от О к z.

Скалярные и векторные величины

  1. Векторное исчисление (например, перемещение (s),сила (F), ускорение (a), скорость (V)энергия (Е)) .

    скалярные величины, которые полностью определяются заданием их числовых значений (длина (L), площадь (S), объм (V),время (t), масса (m) и т. д.) ;

  2. Скалярные величины: температура, объм, плотность, электрический потенциал, потенциальная энергия тела (например, в поле силы тяжести) . Также модуль любого вектора (например, перечисленных ниже) .

    Векторные величины: радиус-вектор, скорость, ускорение, напряжнность электрического поля, напряжнность магнитного поля. И многие другие 🙂

  3. векторная величина имеет численное выражение и направление: скорость, ускорение, сила, электромагнитная индукция, перемещение и т. п. , а скалярная только численное выражение объем, плотность, длиа, ширина, высота, масса (не путать с весом) темпереатура
  4. векторные например скорость (v),сила (F),перемещение (s),импульс (р), энергия (Е). над каждой из этих букв ставится стрелочка-вектор. поэтому они векторные. а скалярные-это масса (m),объем (V),площадь (S),время (t),высота (h)
  5. Векторные это прямолинейные, касательные движения.
    Скалярные это замкнутые движения, которые экранируют векторные.
    Векторные движения передаются через скалярные, как через посредников, как ток передатся от атома к атому по проводнику.
  6. Скалярные величины: температура, объм, плотность, электрический потенциал, потенциальная энергия тела (например, в поле силы тяжести) . Также модуль любого вектора (например, перечисленных ниже) .

    Векторные величины: радиус-вектор, скорость, ускорение, напряжнность электрического поля, напряжнность магнитного поля. И многие другие:-

  7. Скалярная величина (скаляр) это физическая величина, которая имеет только одну характеристику численное значение.

    Скалярная величина может быть положительной или отрицательной.

    Примеры скалярных величин: масса, температура, путь, работа, время, период, частота, плотность, энергия, объем, электроемкость, напряжение, сила тока и т. д.

    Математические действия со скалярными величинами это алгебраические действия.

    Векторная величина

    Векторная величина (вектор) это физическая величина, которая имеет две характеристики модуль и направление в пространстве.

    Примеры векторных величин: скорость, сила, ускорение, напряженность и т. д.

    Геометрически вектор изображается как направленный отрезок прямой линии, длина которого в масштабе модуль вектора.

При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых значений, более точно, которые полностью определяются при помощи числа, полученного в результате их измерения однородной величиной, принятой за единицу. Такие величины называются скалярными или, короче, скалярами. Ска­лярными величинами, например, являются длина, площадь, объ­ем, время, масса, температура тела, плотность, работа, электроёмкость и др. Так как скалярная величина определяется числом (положительным или отрицательным), то ее можно откладывать на соответствующей координатной оси. Так например, часто стро­ят ось времени, температуры, длины (пройденного пути) и другие.

Помимо скалярных величин, в различных задачах встречаются величины, для определения ко­торых, кроме числового значения, необходимо знать также их направление в пространстве. Такие величины называются векторными . Физиче­скими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на нее сила, напряженность электрического или магнитного поля. Век­торные величины используются, например, и в климатологии. Рассмотрим простой пример из климатологии. Если мы скажем, что ветер дует со скоростью 10 м/с, то тем самым введем скаляр­ную величину скорости ветра, но если мы скажем, что дует се­верный ветер со скоростью 10 м/с, то в этом случае скорость ветра будет уже векторной величиной.

Векторные величины изображаются с помощью векторов.

Для геометрического изображения векторных величин слу­жат направленные отрезки, то есть отрезки, имеющие фикси­рованное направление в пространстве. При этом длина отрез­ка равна числовому значению векторной величины, а его на­правление совпадает с направлением векторной величины. Направленный отрезок, характеризующий данную векторную величину, называют геометрическим вектором или просто вектором.

Понятие вектора играет большую роль как в математике, так и во многих областях физики и механики. Многие физические величины могут быть представлены при помощи векторов, и это представление очень часто способствует обобщению и упрощению формул и результатов. Часто векторные величины и векторы, их изображающие, отождествляются друг с другом: так, например, говорят, что сила (или скорость) есть вектор.

Элементы векторной алгебры применяются в таких дисциплинах как: 1) электрические машины; 2) автоматизированный электропривод; 3) электроосвещение и облучение; 4) неразвлетвлённые цепи переменного тока; 5) прикладная механика; 6) теоретическая механика; 7) физика; 8) гидравлика:9) детали машин; 10) сопромат; 11) управление; 12) химия; 13) кинематика; 14) статика и др.

2. Определение вектора. Отрезок прямой задается дву­мя равноправными точками -его концами. Но можно рассматривать направленный отрезок, определяемый упо­рядоченной парой точек. Про эти точки известно, какая из них первая (начало), а какая вторая (конец).

Под направленным отрезком понимают упорядоченную пару точек, первая из которых - точка А - называется его началом, а вторая - В - его концом.

Тогда под вектором понимается в простейшем случае сам направленный отрезок, а в других случаях различные векторы - это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» и т.д.). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.

Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.

Определение 1. Направленный отрезок (или, что то же, упорядоченную пару точек) мы будем называть вектором . Направление на отрезке принято отмечать стрелкой. Над буквенным обозначением вектора при письме ста­вится стрелка, например: (при этом буква, соответст­вующая началу вектора, обязательно ставится впереди). В книгах часто буквы, обозначающие вектор, набираются полужирным шрифтом, например: а .

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают.

Вектор, начало которого совпадает с его концом, называют нулевым. Нулевой вектор обозначается или просто 0.

Расстояние между началом и концом вектора называ­ется его длиной (а также модулем и абсолютной величи­ной). Длина вектора обозначается | | или | |. Длиной вектора, или модулем вектора, называют длину соответствующего направленного отрезка: | | = .

Векторы называются коллинеарными , если они распо­ложены на одной прямой или на параллельных прямых, короче говоря, если существует прямая, которой они параллельны.

Векторы называются компланарными , если существует плоскость, которой они параллельны, их можно изобразить векторами, лежащими на одной плоскости. Нулевой вектор считается коллинеарным любому вектору, так как он не имеет определенного направления. Длина его, разумеется, равна нулю. Очевидно, любые два вектора компланарны; но, конечно, не каждые три вектора в пространстве компланарны. Так как векторы, параллельные друг другу, параллельны одной и той же плоскости, то коллинеарные векторы подавно компланарны. Разумеется, обратное неверно: компланарные векторы могут быть и не коллинеарными. В силу принятого выше условия нулевой вектор коллинеарен со всяким вектором и компланарен со всякой парой векторов, т.е. если среди трёх векторов хотя бы один нулевой, то они компланарны.

2) Слово «компланарные» означает в сущности: «имеющие общую плос­кость», т. е. «расположенные в одной плоскости». Но так как речь здесь идет о свободных векторах, которые можно переносить (не изменяя длины и направ­ления) произвольным образом, мы должны называть компланарными векторы, параллельные одной и той же плоскости, ибо в этом случае их можно пере­нести так, чтобы они оказались расположенными в одной плоскости.

Для сокращения речи условимся в одном термине: если несколько свободных векторов параллельны одной и той же плоскости, то мы будем говорить, что они компланарны. В частности, два вектора всегда компланарны; чтобы в этом убе­диться, достаточно отложить их от одной и той же точки. Ясно, далее, что направление плоскости, в которой параллельны два дан­ных вектора, вполне определено, если эти два вектора не парал­лельны между собою. Любую плоскость, которой параллельны данные компланарные векторы, мы будем называть просто пло­скостью данных векторов.

Определение 2. Два вектора называются равными , если они коллинеарны, одинаково направлены и имеют равные длины.

Необходимо всегда помнить, что равенство длин двух векторов ещё не означает равенства этих векторов.

По самому смыслу определения, два вектора, порознь равные третьему, равны между собой. Очевидно, все нулевые векторы равны между собой.

Из этого определения непосредственно вытекает, что, выбрав любую точку А", мы может построить (и притом только один) вектор А" В", равный некоторому заданному вектору , или, как говорят, перенести вектор в точку А" .

Замечание . Для векторов нет понятий «больше» или «меньше», т.е. они равны или не равны.

Вектор, длина которого равна единице, называется единичным вектором и обозначается через е. Единичный вектор, направление которого совпадает с направлением вектора а, называется ортом вектора и обозначается а .

3. О другом определении вектора . Заметим, что понятие равенства векторов существенно отличается от понятия равенства, например, чисел. Каждое число равно только самому себе, иначе говоря, два равных числа при всех обстоятельствах могут рассматриваться как одно и то же число. С векторами, как мы видим, дело обстоит по-другому: в силу определения существуют различные, но равные между собой векторы. Хотя в большинстве случаев у нас не будет необходимости различать их между собой, вполне может оказаться, что в какой-то момент нас будет интересовать именно вектор , а не другой, равный ему вектор А"В".

Для того чтобы упростить понятие равенства векторов (и снять некоторые связанные с ним трудности), иногда идут на усложнение определения вектора. Мы не будем пользоваться этим усложненным определением, но сформулируем его. Чтобы не путать, мы будем писать «Вектор» (с большой буквы) для обозначения определяемого ниже понятия.

Определение 3 . Пусть дан направленный отрезок. Множество всех направленных отрезков, равных данному в смысле определения 2, называется Вектором.

Таким образом, каждый направленный отрезок определяет Век­тор. Легко заметить, что два направленных отрезка определяют один и тот же Вектор тогда и только тогда, когда они равны. Для Векторов, как и для чисел, равенство означает совпадение: два Вектора равны в том и только в том случае, когда это один и тот же Век­тор.

При параллельном переносе пространства точка и ее образ сос­тавляют упорядоченную пару точек и определяют направленный отрезок, причем все такие направленные отрезки равны в смысле определения 2. Поэтому параллельный перенос пространства можно отождествить с Вектором, составленным из всех этих направленных отрезков.

Из начального курса физики хорошо известно, что сила может быть изображена направленным отрезком. Но она не может быть изображена Вектором, поскольку силы, изображаемые равными нап­равленными отрезками, производят, вообще говоря, различные дейст­вия. (Если сила действует на упругое тело, то изображающий ее направленный отрезок не может быть перенесён даже вдоль той прямой, на которой он лежит.)

Это только одна из причин, по которым наряду с Векторами, т. е. множествами (или, как говорят, классами) равных направлен­ных отрезков, приходится рассматривать и отдельных представителей этих классов. При этих обстоятельствах применение определения 3 усложняется большим числом оговорок. Мы будем придерживаться определения 1, причем по общему смыслу всегда будет ясно, идет ли речь о вполне определенном векторе, или на его место может быть подставлен любой, ему равный.

В связи с определением вектора стоит разъяснить значение не­которых слов, встречающихся в литературе.

В физике существует несколько категорий величин: векторные и скалярные.

Что такое векторная величина?

Векторная величина имеет две основные характеристики: направление и модуль . Два вектора будут одинаковыми, если их значение по модулю и направление совпадают. Для обозначения векторной величины чаще всего используют буквы, над которыми отображается стрелочка. В качестве примера векторной величины можно привести силу, скорость или ускорение.

Для того, чтобы понять сущность векторной величины, следует рассмотреть ее с геометрической точки зрения. Вектор представляет собой отрезок, имеющий направление. Длина такого отрезка соотносится со значением его модуля. Физическим примером векторной величины является смещение материальной точки, перемещающейся в пространстве. Такие параметры, как ускорение этой точки, скорость и действующие на нее силы, электромагнитного поля тоже будут отображаться векторными величинами.

Если рассматривать векторную величину независимо от направления, то такой отрезок можно измерить. Но, полученный результат будет отображать только лишь частичные характеристики величины. Для ее полного измерения следует дополнить величину другими параметрами направленного отрезка.

В векторной алгебре существует понятие нулевого вектора . Под этим понятием подразумевается точка. Что касается направления нулевого вектора, то оно считается неопределенным. Для обозначения нулевого вектора используется арифметический нуль, набранный полужирным шрифтом.

Если проанализировать все вышесказанное, то можно сделать вывод, что все направленные отрезки определяют вектора. Два отрезка будут определять один вектор только в том случае, если они являются равными. При сравнении векторов действует тоже правило, что и при сравнении скалярных величин. Равенство означает полное совпадение по всем параметрам.

Что такое скалярная величина?

В отличие от вектора, скалярная величина обладает только лишь одним параметром – это ее численное значение . Стоит отметить, что анализируемая величина может иметь как положительное численное значение, так и отрицательное.

В качестве примера можно привести массу, напряжение, частоту или температуру. С такими величинами можно выполнять различные арифметические действия: сложение, деление, вычитание, умножение. Для скалярной величины такая характеристика, как направление, не свойственна.

Скалярная величина измеряется числовым значением, поэтому ее можно отображать на координатной оси. Например, очень часто строят ось пройденного пути, температуры или времени.

Основные отличия между скалярными и векторными величинами

Из описаний, приведенных выше, видно, что главное отличие векторных величин от скалярных заключается в их характеристиках . У векторной величины есть направление и модуль, а у скалярной только численное значение. Безусловно, векторную величину, как и скалярную, можно измерить, но такая характеристика не будет полной, так как отсутствует направление.

Для того, чтобы более четко представить отличие скалярной величины от векторной, следует привести пример. Для этого возьмем такую область знаний, как климатология . Если сказать, что ветер дует со скоростью 8 метров в секунду, то будет введена скалярная величина. Но, если сказать, что северный ветер дует со скоростью 8 метров в секунду, то речь пойдет о векторном значении.

Векторы играют огромную роль в современной математике, а также во многих сферах механики и физики. Большинство физических величин может быть представлено в виде векторов. Это позволяет обобщить и существенно упростить используемые формулы и результаты. Часто векторные значения и векторы отождествляются друг с другом. Например, в физике можно услышать, что скорость или сила является вектором.