Самые красивые физические и математические формулы. Общие правила набора формул

Математик Ян Стюарт (Ian Stewart) в своей новой книге «В поисках неизвестного: 17 уравнений, которые изменили мир» рассматривает несколько наиболее важных уравнений всех времен и приводит примеры их практического применения.

Согласно Теореме Пифагора в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Важность : Теорема Пифагора — важнейшее уравнение в геометрии, которое связывает ее с алгеброй и является основой тригонометрии. Без него было бы невозможно создать точную картографию и навигацию.

Современное использование : Триангуляция используется и по сей день, чтобы точно определить относительное расположение для GPS навигации.

Логарифм - это степень, в которую надо возвести основание, чтобы получить аргумент.

Важность : Логарифмы стали настоящей революцией, позволив астрономам и инженерам делать расчеты более быстро и точно. С появлением компьютеров они не потеряли своего значения, поскольку все еще существенны для ученых.

Современное использование : Логарифмы важная составляющая для понимания радиоактивного распада.

Основная теорема анализа или формула Ньютона - Лейбница дает соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной.

Важность : Теорема анализа фактически создала современный мир. Исчисление имеет важное значение в нашем понимание того, как измерять тела, кривые и площади. Она является основой многих природных законов и источником дифференциальных уравнений.

Современное использование : Любая математическая проблема, где требуется оптимальное решение. Существенное значение для медицины, экономики и информатики.

Классическая теория тяготения Ньютона описывает гравитационное взаимодействие.

Важность : Теория позволяет рассчитать силу гравитации между двумя объектами. Хотя позднее она была вытеснена теорией относительности Эйнштейна, теория все равно необходима для практического описания того, как объекты взаимодействуют друг с другом. Мы используем ее и по сей день для проектирования орбит спутников и космических аппаратов.

Современное использование : Позволяет найти наиболее энергоэффективные пути для вывода спутников и космических зондов. Также делает возможным спутниковое телевидение.

Комплексные числа

Комплексные числа — расширение поля вещественных чисел.

Важность : Многие современные технологии, в том числе цифровые фотокамеры, не могли быть изобретены без комплексных чисел. Кроме того, они позволяют проводить анализ, который нужен инженерам для решения практических задач в авиации.

Современное использование : Широко используется в электротехнике и сложных математических теориях.

Важность : Внесла вклад в понимание топологического пространства, в котором рассматриваются только свойства непрерывности. Необходимый инструмент для инженеров и биологов.

Современное использование : Топология используется, чтобы понять поведение и функции ДНК.

Важность : Уравнение является основой современной статистики. Естественные и социальные науки не могли бы существовать в своей нынешней форме без него.

Современное использование : Используется в клинических испытаниях для определения эффективности лекарств по сравнению с отрицательными побочными эффектами.

Дифференциальное уравнение, описывающее поведение волн.

Важность : Волны исследуются с целью определения времени и места землетрясений, а также для прогнозирования поведения океана.

Современное использование : Нефтяные компании используют взрывчатку, а затем считывают данные от последующих звуковых волн для определения геологических формаций.

Важность : Уравнение позволяет разбивать, очищать и анализировать сложные шаблоны.

Современное использование : Используется при сжатии информации изображений в формате JPEG, а так же для обнаружения структуры молекул.

Уравнения Навье-Стокса

Уравнения Навье-Стокса

В левой части уравнения — ускорение небольшого количества жидкости, в правой — силы, которые воздействуют на него.

Важность : Как только компьютеры стали достаточно мощными, чтобы решить это уравнение, они открыли сложную и очень полезную области физики. Она особенно полезна для создания более качественной аэродинамики у транспортных средств.

Современное использование : Среди прочего, уравнение помогло в усовершенствовании современных пассажирских самолетов.

Описывают электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

Важность : Помогли в понимании электромагнитных волн, что способствовало созданию многих технологий, которые мы используем сегодня.

Современное использование : Радар, телевидение и современные средства связи.

Вся энергия и тепло со временем исчезнет.

Важность : Имеет существенное значение для нашего понимания энергии и Вселенной через понятие энтропии. Открытие закона помогло улучшить паровой двигатель.

Современное использование : Помог доказать, что материя состоит из атомов, физики до сих пор пользуются этим знанием.

Энергия равна массе, умноженной на квадрат скорости света.

Важность : Наверное, самое известное уравнение в истории. Оно полностью изменило нашу точку зрения на материю и реальность.

Современное использование : Помогло создать ядерное оружие. Используется в GPS навигации.

Уравнение Шрёдингера

Описывает материю как волну, а не как частицу.

Важность : Перевернула представления физиков — частицы могут существовать в диапазоне возможных состояний.

Современное использование : Существенный вклад в использование полупроводников и транзисторов, и, таким образом, в большинство современных компьютерных технологий.

Оценивает количество данных в куске кода путем расчета вероятности его символов.

Важность : Это уравнение, которое открыло дверь в Информационную Эпоху.

Современное использование : В значительной степени все, что связано с обнаружением ошибок в кодировании (программировании).

Оценка изменений в популяции живых существ из поколения в поколение с ограниченными ресурсами.

Важность : Помогла в развитии , которая полностью изменила наше понимание того, как работают природные системы.

Современное использование : Используется для моделирования землетрясений и прогноза погоды.

Модель Блэка-Скоулза

Одна из моделей ценообразования опционов.

Важность : Помогла создать несколько триллионов долларов. Согласно некоторым экспертам, неправильное использование формулы (и ее производных) способствовало финансовому кризису. В частности, уравнение имеет несколько предположений, которые не справедливы на реальных финансовых рынках.

Современное использование : Даже после кризиса используются для определения цен.

Вместо заключения

В мире существует множество других важных уравнений и формул, которые изменили судьбу человечества в целом и нашу личную жизнь в частности. Среди них, модель Ходжкина-Хаксли, Фильтр Калмана и, конечно, уравнение поисковой системы Google. Мы надеемся, что нам удалось показать насколько важна математика, и насколько бесценен ее вклад для всех людей.

3. Вот так решают уравнения блондинки!


4. Математика в Зазеркалье

Эта надпись, которую я сделал несколько лет назад, наверное, самое короткое доказательство того, что... 2 = 3. Приставьте к ней сверху зеркало (или посмотрите ее на просвет), и вы увидите, как «двое» превратятся в «трое».

5. Буквомешалка

Еще одна необычная формула:

eleven + two = twelve + one .

Оказывается, на английском равенство 11 + 2 = 12 + 1 верно, даже если его записать словами - «сумма» букв слева и справа одинакова! Это значит, что правая часть этого равенства - анаграмма от левой, то есть получается из нее перестановкой букв.

Подобные, хотя и менее интересные буквенные равенства можно получать и на русском языке:

пятнадцать + шесть = шестнадцать + пять .

6. Пи... или не Пи?..

С 1960 до 1970 года основной национальный напиток, называвшийся «Московская особая водка» стоил: пол-литра 2,87, а четвертинка 1,49. Эти цифры знало, наверное, почти всё взрослое население СССР. Советские математики заметили, что если цену поллитровки возвести в степень, равную цене четвертинки, то получится число «Пи»:

1,49 2,87 ??

(Сообщил Б. С. Горобец).

Уже после выхода первого издания книги доцент химфака МГУ Леензон И. А. прислал мне такой любопытный комментарий к этой формуле: «...много лет назад, когда не было калькуляторов, а мы на физфаке сдавали трудный зачет по логарифмической линейке (!) (сколько раз нужно двигать подвижную линейку вправо-влево?), я с помощью точнейших отцовых таблиц (он был геодезистом, экзамен по высшей геодезии ему снился всю жизнь) узнал, что рупь-сорок-девять в степени два-восемьдесят-семь равно 3,1408. Меня это не удовлетворило. Не мог наш советский Госплан действовать столь грубо. Консультации в Министерстве торговли на Кировской показали, что все расчеты цен в государственном масштабе делались с точностью до сотых долей копейки. Но назвать точные цифры мне отказались, ссылаясь на секретность (меня это тогда удивило - какая может быть секретность в десятых и сотых долях копейки). В начале 1990-х мне удалось получить в архивах точные цифры по стоимости водки, которые к тому времени были рассекречены специальным декретом. И вот что оказалось: четвертинка: 1 рубль 49,09 коп. В продаже - 1,49 руб. Поллитровка: 2 рубля 86,63 коп. В продаже - 2,87 руб. Воспользовавшись калькулятором я легко выяснил, что в таком случае четвертинка в степени пол-литра дает (после округления до 5 значащих цифр) как раз 3,1416! Остается только удивляться математическим способностям работников советского Госплана, которые (я в этом ни секунды не сомневаюсь) специально подогнали расчетную стоимость самого популярного напитка под заранее известный результат».

Какой известный со школы математик зашифрован в этом ребусе?

8. Теория и практика

Математику, физику и инженеру предложили такую задачу: «Юноша и девушка стоят у противоположных стен зала. В какой-то момент они начинают идти навстречу другу и каждые десять секунд преодолевают половину расстояния между ними. Спрашивается, через какое время они достигнут друг друга?»

Математик, не раздумывая, ответил:

Никогда.

Физик, немного подумав, сказал:

Через бесконечное время.

Инженер после долгих расчетов выдал:

Примерно через две минуты они будут достаточно близки для любых практических целей.

9. Формула красоты от Ландау

На следующую пикантную формулу, приписываемую Ландау, большому любителю слабого пола, обратил мое внимание известный Ландаувед профессор Горобец.

Как нам сообщил доцент МГУИЭ А. И. Зюльков, он слышал, что Ландау вывел следующую формулу показателя женской привлекательности:

где K - обхват по бюсту; M - по бедрам; N - по талии, T - рост, всё в см; P - вес в кг.

Так, если принять параметры для модели (1960-х гг.) приблизительно: 80-80-60-170-60 (в указанной выше последовательности величин), то по формуле получим 5. Если же принять параметры «антимодели», например: 120-120-120-170-60, то получим 2. Вот в этом интервале школьных оценок и работает, грубо говоря, «формула Ландау».

(Цит. по книге: Горобец Б . Круг Ландау. Жизнь гения. М.: Издательство ЛКИ/URSS, 2008.)

10. Знать бы то расстояние...

Еще одно наукообразное рассуждение по поводу женской привлекательности, приписываемое Дау.

Определим привлекательность женщины как функцию от расстояния до нее. При бесконечном значении аргумента эта функция обращается в нуль. С другой стороны, в точке нуль она также равна нулю (речь идет о внешней привлекательности, а не об осязательной). Согласно теореме Лагранжа, неотрицательная непрерывная функция, принимающая на концах отрезка нулевые значения, имеет на этом отрезке максимум. Следовательно:

1. Существует расстояние, с которого женщина наиболее привлекательна.

2. Для каждой женщины это расстояние свое.

3. От женщин надо держаться на расстоянии.

11. Лошадиное доказательство

Теорема: Все лошади одного цвета.

Доказательство. Докажем утверждение теоремы по индукции.

При n = 1, то есть для множества, состоящего из одной лошади, утверждение, очевидно, выполнено.

Пусть утверждение теоремы верно при n = k . Докажем, что оно верно и при n = k + 1. Для этого рассмотрим произвольное множество из k + 1 лошадей. Если убрать из него одну лошадь, то их останется k . По предположению индукции все они одного цвета. Теперь вернем на место убранную лошадь и заберем какую-либо другую. Опять-таки по предположению индукции и эти k оставшихся лошадей одного цвета. Но тогда и все k + 1 лошадей будут одного цвета.

Отсюда, согласно принципу математической индукции, все лошади одного цвета. Теорема доказана.

12. Немного о крокодилах

Еще одна замечательная иллюстрация применения математических методов к зоологии.

Теорема: Крокодил более длинный, чем широкий.

Доказательство. Возьмем произвольного крокодила и докажем две вспомогательные леммы.

Лемма 1: Крокодил более длинный, чем зеленый.

Доказательство. Посмотрим на крокодила сверху - он длинный и зеленый. Посмотрим на крокодила снизу - он длинный, но не такой зеленый (на самом деле он темно-серый).

Следовательно, лемма 1 доказана.

Лемма 2: Крокодил более зеленый, чем широкий.

Доказательство. Посмотрим на крокодила еще раз сверху. Он зеленый и широкий. Посмотрим на крокодила сбоку: он зеленый, но не широкий. Это доказывает лемму 2.

Утверждение теоремы, очевидно, следует из доказанных лемм.

Обратная теорема («Крокодил более широкий, чем длинный») доказывается аналогично.

На первый взгляд, из обеих теорем следует, что крокодил - квадратный. Однако, поскольку неравенства в их формулировках строгие, то настоящий математик сделает единственно правильный вывод: КРОКОДИЛОВ НЕ СУЩЕСТВУЕТ!

13. Опять индукция

Теорема: Все натуральные числа равны между собой.

Доказательство. Необходимо доказать, что для любых двух натуральных чисел A и B выполнено равенство A = B . Переформулируем это в таком виде: для любого N > 0 и любых A и B , удовлетворяющих равенству max(A , B ) = N , должно выполняться и равенство A = B .

Докажем это по индукции. Если N = 1, то A и B , будучи натуральными, оба равны 1. Поэтому A = B .

Предположим теперь, что утверждение доказано для некоторого значения k . Возьмем A и B такими, чтобы max(A , B ) = k + 1. Тогда max(A –1, B –1) = k . По предположению индукции отсюда следует, что (A –1) = (B –1). Значит, A = B .

14. Все обобщения неправильны!

Любители лингвистических и математических головоломок наверняка знают про рефлексивные, или самоописывающиеся (не подумайте ничего плохого), самоотносимые слова, фразы и числа. К последним, например, относится число 2100010006, в котором первая цифра равна количеству единиц в записи этого числа, вторая - количеству двоек, третья - количеству троек, ..., десятая - количеству нулей.

К самоописывающимся словам относится, скажем, слово двадцатиоднобуквенное , придуманное мной несколько лет назад. В нем действительно 21 буква!

Самоописывающихся фраз известно великое множество. Один из первых примеров на русском придумал много лет назад знаменитый карикатурист и словесный остроумец Вагрич Бахчанян: В этом предложении тридцать две буквы . Вот несколько других, придуманных гораздо позже: 1. Семнадцать буковок . 2. В этом предложении есть ошибка, расположенная в канце . 3. Это предложение состояло бы из семи слов, если было бы на семь слов короче . 4. Вы находитесь под моим контролем, поскольку вы будете читать меня, пока не дочитаете до конца . 5. ...Это предложение начинают и заканчивают три точки .

Есть и более сложные конструкции. Полюбуйтесь, например, на вот этого монстра (см. заметку С. Табачникова «У попа была собака» в журнале «Квант», № 6, 1989): В этой фразе два раза встречается слово «в», два раза встречается слово «этой», два раза встречается слово «фразе», четырнадцать раз встречается слово «встречается», четырнадцать раз встречается слово «слово», шесть раз встречается слово «раз», девять раз встречается слово «раза», семь раз встречается слово «два», три раза встречается слово «четырнадцать», три раза встречается слово «три», два раза встречается слово «девять», два раза встречается слово «семь», два раза встречается слово «шесть» .

Через год после публикации в «Кванте» И. Акулич придумал самоописывающуюся фразу, описывающую не только слова в нее входящие, но и знаки препинания: Фраза, которую Вы читаете, содержит: два слова «Фраза», два слова «которую», два слова «Вы», два слова «читаете», два слова «содержит», двадцать пять слов «слова», два слова «слов», два слова «двоеточие», два слова «запятых», два слова «по», два слова «левых», два слова «и», два слова «правых», два слова «кавычек», два слова «а», два слова «также», два слова «точку», два слова «одно», два слова «одну», двадцать два слова «два», три слова «три», два слова «четыре», три слова «пять», четыре слова «двадцать», два слова «тридцать», одно двоеточие, тридцать запятых, по двадцать пять левых и правых кавычек, а также одну точку .

Наконец, еще через несколько лет все в том же «Кванте», появилась заметка А. Ханяна, в которой приводилась фраза, скрупулезно описывающая все свои буковки: В этой фразе двенадцать В, две Э, семнадцать Т, три О, две Й, две Ф, семь Р, четырнадцать А, две 3, двенадцать Е, шестнадцать Д, семь Н, семь Ц, тринадцать Ь, восемь С, шесть М, пять И, две Ч, две Ы, три Я, три Ш, две П .

«Явно чувствуется, что не хватает еще одной фразы - которая рассказывала бы и о всех своих буквах, и о знаках препинания», написал в частном письме ко мне И. Акулич, породивший одного из приведенных ранее монстров. Возможно, эту весьма непростую задачу решит кто-либо из наших читателей.

15. «И гений - парадоксов друг...»

В продолжение предыдущей темы стоит упомянуть про рефлексивные парадоксы.

В уже упоминавшейся ранее книге Дж. Литлвуда «Математическая смесь» справедливо говорится, что «все рефлексивные парадоксы являются, конечно, превосходными шутками». Там же приводятся два из них, которые я позволю себе процитировать:

1. Должны существовать (положительные) целые числа, которые не могут быть заданы фразами, состоящими менее, чем из шестнадцати слов. Любое множество положительных целых чисел содержит наименьшее число, и поэтому существует число N , «наименьшее целое число, которое не может быть задано фразой, состоящей из менее, чем шестнадцати слов». Но эта фраза содержит 15 слов и определяет N .

2. В журнале Spectator был объявлен конкурс на тему «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» Первый приз получил ответ:

Наш второй конкурс

Первый приз во втором конкурсе этого года присужден мистеру Артуру Робинсону, остроумный ответ которого без натяжки должен быть признан наилучшим. Его ответ на вопрос: «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» был озаглавлен «Наш второй конкурс», но из-за лимитирования бумаги мы не можем напечатать его полностью.

16. Палиндроматика

Есть такие удивительные фразы, которые читаются одинаково и слева направо и справа налево. Одну наверняка знают все: А роза упала на лапу Азора . Именно ее просила написать в диктанте неуча Буратино капризная Мальвина. Называются такие взаимообратные фразы палиндромами, что в переводе с греческого означает «бегущий назад, возвращающийся». Вот еще несколько примеров: 1. Лилипут сома на мосту пилил . 2. Лезу на санузел . 3. Лег на храм, и дивен и невидим архангел . 4. Нажал кабан на баклажан . 5. Муза, ранясь шилом опыта, ты помолишься на разум . (Д. Авалиани). 6. Уж редко рукою окурок держу ... (Б. Гольдштейн) 7. Учуя молоко, я около мяучу . (Г. Лукомников). 8. Он верба, но она - бревно . (С. Ф.)

А интересно, есть ли палиндромы в математике? Для ответа на этот вопрос попробуем перенести идею взаимообратного, симметричного прочтения на числа и формулы. Оказывается, это не так уж и трудно. Познакомимся лишь с несколькими характерными примерами из этой палиндромной математики, палиндроматики . Оставляя в стороне палиндромные числа - например, 1991 , 666 и т.д. - обратимся сразу к симметричным формулам.

Попытаемся для начала решить такую задачу: найти все пары таких двузначных чисел

(x 1 - первая цифра, y 1 - вторая цифра) и

чтобы результат их сложения не менялся в результате прочтения суммы справа налево, т.е.

Например, 42 + 35 = 53 + 24.

Задача решается тривиально: сумма первых цифр у всех таких пар чисел равна сумме их вторых цифр . Теперь можно без труда строить подобные примеры: 76 + 34 = 43 + 67, 25 + 63 = 36 + 52 и так далее.

Рассуждая аналогичным образом, можно легко решить такую же задачу для остальных арифметических действий.

В случае разности, т.е.

получаются следующие примеры: 41 – 32 = 23 –14, 46 – 28 = 82 – 64, ... - суммы цифр у таких чисел равны (x 1 + y 1 = x 2 + y 2 ).

В случае умножения имеем: 63 48 = 84 36, 82 14 = 41 28, ... - при этом произведение первых цифр у чисел N 1 и N 2 равно произведению их вторых цифр (x 1 x 2 = y 1 y 2 ).

Наконец, для деления получаем такие примеры:

В этом случае произведение первой цифры числа N 1 на вторую цифру числа N 2 равно произведению двух других их цифр, т.е. x 1 y 2 = x 2 y 1 .

17. Антисоветская теорема

Доказательство следующей «теоремы», появившейся в эпоху «недоразвитого социализма», опирается на популярные тезисы тех лет относительно роли Коммунистической партии.

Теорема. Роль партии - отрицательна.

Доказательство. Хорошо известно, что:

1. Роль партии непрерывно возрастает.

2. При коммунизме, в бесклассовом обществе, роль партии будет нулевой.

Таким образом, имеем непрерывно возрастающую функцию, стремящуюся к 0. Следовательно, она отрицательна. Теорема доказана.

18. Детям до шестнадцати решать запрещается

Несмотря на кажущуюся абсурдность следующей задачи, у нее, тем не менее, есть вполне строгое решение.

Задача. Мама старше сына на 21 год. Через шесть лет она будет старше его в пять раз. Спрашивается: ГДЕ ПАПА?!

Решение. Пусть X - возраст сына, а Y - возраст мамы. Тогда условие задачи записывается в виде системы двух простых уравнений:

Подставляя Y = X + 21 во второе уравнение, получим 5X + 30 = X + 21 + 6, откуда X = –3/4. Таким образом, сейчас сыну минус 3/4 года, т.е. минус 9 месяцев. А это значит, что папа в данный момент находится на маме!

19. Неожиданный вывод

Хорошо известно ироническое выражение «Если ты такой умный, то почему ты такой бедный?», применимое, увы, очень ко многим. Оказывается, у этого грустного феномена есть строгое математическое обоснование, опирающееся на столь же бесспорные истины.

А именно, начнем с двух всем известных постулатов:

Постулат 1: Знание = Сила.

Постулат 2: Время = Деньги.

Кроме того, любой школьник знает, что

Путь s = Скорость x Время = Работа: Сила ,

Работа: Время = Сила x Скорость (*)

Подставляя значения для «времени» и «силы» из обоих постулатов в (*), получим:

Работа: (Знание x Скорость) = Деньги (**)

Из полученного равенства (**) видно, что устремляя «знание» или «скорость» к нулю, мы можем получить за любую «работу» сколь угодно большие деньги.

Отсюда вывод: чем глупее и ленивее человек, тем больше денег он сможет заработать.

20. Математическая игра Ландау

Несколько лет назад в журнале «Наука и жизнь» (№1, 2000) была опубликована вызвавшая огромный интерес читателей заметка профессора Б. Горобца, посвященная замечательной игре-головоломке, которую придумал академик Ландау, чтобы не скучать во время поездок в машине. Поиграть в эту игру, в которой датчиком случайных чисел служили номера проносящихся мимо машин (тогда эти номера состояли из двух букв и двух пар цифр), он часто предлагал своим спутникам. Суть игры заключалась в том, чтобы с помощью знаков арифметических действий и символов элементарных функций (т.е. +, –, x, :, v, sin, cos, arcsin, arctg, lg и т.д.) привести к одному и тому же значению эти два двузначных числа из номера попутной машины. При этом допускается использование факториала (n ! = 1 x 2 x ... х n ), но не допускается использование секанса, косеканса и дифференцирования.

Например, для пары 75–33 искомое равенство достигается следующим образом:

а для пары 00–38 - так:

Однако не все номера решаются столь просто. Некоторые из них (например 75–65) не поддавались и автору игры, Ландау. Поэтому возникает вопрос о каком-либо универсальном подходе, некоей единой формуле, позволяющей «решать» любую пару номеров. Этот же вопрос задавал Ландау и его ученик проф. Каганов. Вот что он, в частности, пишет: «Всегда ли можно сделать равенство из автомобильного номера?» - спросил я у Ландау. - «Нет», - ответил он весьма определенно. - «Вы доказали теорему о несуществовании решения?» - удивился я. - «Нет», - убежденно сказал Лев Давидович, - «но не все номера у меня получались».

Однако такие решения были найдены, причем одно из них еще при жизни самого Ландау.

Харьковский математик Ю. Палант предложил для уравнивания пар чисел формулу

позволяющую в результате неоднократного применения выразить любую цифру через любую меньшую. «Я привел доказательство Ландау», - пишет об этом решении Каганов. - «Оно ему очень понравилось..., и мы полушутя, полусерьезно обсуждали, не опубликовать ли его в каком-нибудь научном журнале».

Однако в формуле Паланта используется «запрещенный» ныне секанс (вот уже более 20 лет он не входит в школьную программу), а посему ее нельзя считать удовлетворительной. Впрочем, мне удалось это легко исправить с помощью модифицированной формулы

Полученная формула (опять-таки при необходимости ее надо применять несколько раз) позволяет выразить любую цифру через любую большую цифру, не применяя других цифр, что, очевидно, исчерпывает задачу Ландау.

1. Пусть среди цифр нет нулей. Составим из них два числа ab и cd , (это, разумеется, не произведения). Покажем, что при n ? 6:

sin[(ab )!]° = sin[(cd )!]° = 0.

Действительно, sin(n !)° = 0, если n ? 6, так как sin(6!)° = sin720° = sin(2 x 360°) = 0. Дальше любой факториал получается умножением 6! на последующие целые числа: 7! = 6! x 7, 8! = 6! x 7 x 8 и т.д., давая кратное число раз по 360° в аргументе синуса, делая его (и тангенс тоже) равным нулю.

2. Пусть в какой-то паре цифр есть ноль. Умножаем его на соседнюю цифру и приравниваем к синусу факториала в градусах, взятого от числа в другой части номера.

3. Пусть в обеих частях номера имеются нули. При умножении на соседние цифры они дают тривиальное равенство 0 = 0.

Разбиение общего решения на три пункта с умножением на ноль в пунктах 2 и 3 связано с тем, что sin(n !)° ? 0, если n < 6».

Разумеется, подобные общие решения лишают игру Ландау изначальной прелести, представляя лишь абстрактный интерес. Поэтому попробуйте поиграть с отдельными трудными номерами, не используя универсальных формул. Вот некоторые из них: 59–58; 47–73; 47–97; 27–37; 00–26.

21. Гадание по определителям

22. 9 знаков

Еще про определители.

Мне рассказывали, что одно время среди первокурсников мехмата была популярна игра в «определитель» на деньги. Двое игроков чертят на бумаге определитель 3 x 3 с незаполненными ячейками. Затем по очереди вставляют в пустые ячейки цифры от 1 до 9. Когда все клетки заполнены, определитель считают - ответ с учетом знака и есть выигрыш (или проигрыш) первого игрока, выраженный в рублях. То есть, если, например, получилось число –23, то первый игрок платит второму 23 рубля, а если, скажем, 34, то, наоборот, второй платит первому 34 рубля.

Хотя правила игры просты, как репка, придумать правильную стратегию выигрыша очень нелегко.

23. Как академики задачу решали

Эту заметку мне прислал математик и писатель А. Жуков, автор замечательной книги «Вездесущее число пи».

Профессор Борис Соломонович Горобец, преподающий математику в двух московских вузах, написал книгу о великом физике Льве Давидовиче Ландау (1908–1968) - «Круг Ландау». Вот какую любопытную историю, связанную с одной физтеховской вступительной задачей он нам рассказал.

Случилось так, что соратник Ландау и его соавтор по десятитомному курсу по теоретической физике академик Евгений Михайлович Лифшиц (1915–1985) в 1959 году помогал выпускнику школы Боре Горобцу готовиться к поступлению в один из ведущих физических вузов Москвы.

На письменном экзамене по математике в Московском физико-математическом институте предлагалась следующая задача: «В основании пирамиды SABC лежит прямоугольный равнобедренный треугольник ABC, с углом C = 90°, стороной AB = l. Боковые грани образуют с плоскостью основания двугранные углы?, ?, ?. Найдите радиус вписанного в пирамиду шара».

Будущий профессор не справился тогда с задачей, но запомнил ее условие и позже сообщил Евгению Михайловичу. Тот, повозившись с задачей в присутствии ученика, не смог решить ее сходу и забрал с собой домой, а вечером позвонил и сообщил, что, не одолев ее в течение часа, предложил эту задачу Льву Давидовичу.

Ландау обожал решать задачи, вызывавшие затруднения у других. Вскоре он перезвонил Лифшицу и, довольный, сказал: «Задачу решил. Решал ровно час. Позвонил Зельдовичу, теперь решает он.» Поясним: Яков Борисович Зельдович (1914–1987) - известный ученый, считавший себя учеником Ландау, был в те годы главным физиком-теоретиком в сверхсекретном Советском Атомном проекте (о чем, конечно, тогда мало кто знал). Примерно через час Е. М. Лифшиц позвонил снова и сообщил: только что ему позвонил Зельдович и не без гордости сказал: «Решил я вашу задачу. За сорок минут решил!»

А за какое время справитесь с этой задачей вы?

24. Задачка

В остроумном сборнике физтеховского юмора «Занаучный юмор» (М., 2000) есть немало математических шуток. Вот только одна из них.

При испытании одного изделия произошел один отказ. Какова вероятность безотказной работы изделия?

Теорема. Все натуральные числа интересны.

Доказательство. Предположим противное. Тогда должно существовать наименьшее неинтересное натуральное число. Ха, так ведь это чертовски интересно!

26. Высшая арифметика

1 + 1 = 3, когда значение 1 достаточно велико.

27. Формула Эйнштейна-Пифагора

E = m c 2 = m(a 2 + b 2).

28. О пользе теорвера

Эту забавную историю из моей студенческой жизни вполне можно предлагать на семинарах по теории вероятностей в качестве задачки.

Летом мы с друзьями отправились в поход в горы. Нас было четверо: Володя, два Олега и я. У нас была палатка и три спальника, из которых один двухместный - для нас с Володей. С этими самыми спальниками, точнее с их расположением в палатке, и вышла закавыка. Дело в том, что шли дожди, палатка была тесной, с боков подтекало, и лежащим с краю было не очень-то удобно. Поэтому я предложил решить эту проблему «по-честному», с помощью жребия.

Смотрите, - сказал я Олегам, - наш с Володей двуспальник может быть либо с краю, либо в центре. Поэтому будем бросать монетку: если выпадет «орел» - наш двуспальник будет с краю, если «решка» - в центре.

Олеги согласились, однако через нескольких ночевок с краю (нетрудно посчитать по формуле полной вероятности, что для каждого из нас с Володей вероятность спать не у края палатки равна 0,75) Олеги заподозрили неладное и предложили пересмотреть договор.

Действительно, - сказал я, - шансы были неравны. На самом деле для нашего двуспальника три возможности: с левого края, с правого и в центре. Поэтому каждый вечер мы будем тянуть одну из трех палочек - если вытянем короткую, то наш двуспальник будет в центре.

Олеги опять согласились, хотя и на этот раз наши шансы ночевать не у края (теперь вероятность равна 0,66, точнее, две третьих) были предпочтительнее, нежели у каждого из них. После двух ночевок с краю (на нашей стороне были лучшие шансы плюс везение) Олеги снова поняли, что их надули. Но тут, к счастью, кончились дожди, и проблема отпала сама собой.

А ведь на самом деле наш двуспальник должен быть всегда с краю, а мы с Володей уже с помощью монетки определяли бы каждый раз, кому повезло. То же бы делали и Олеги. В этом случае шансы спать с краю были бы у всех одинаковы и равны 0,5.

Примечания:

Иногда аналогичную историю рассказывают про Жана Шарля Франсуа Штурма.

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очерёдность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

2 + 2 = 7 {\displaystyle 2+2=7} - пример формулы, имеющей значение «ложь»;

Y = ln ⁡ (x) + sin ⁡ (x) {\displaystyle y=\ln(x)+\sin(x)} - функция одного действительного аргумента или однозначная функция;

Z = y 3 y 2 + x 2 {\displaystyle z={\frac {y^{3}}{y^{2}+x^{2}}}} - функция нескольких аргументов или многозначная функция (график одной из самых замечательных кривых - верзьера Аньези);

Y = 1 − | 1 − x | {\displaystyle y=1-|1-x|} - не дифференцируемая функция в точке x = 1 {\displaystyle x=1} (непрерывная ломаная линия не имеет касательной);

X 3 + y 3 = 3 a x y {\displaystyle x^{3}+y^{3}=3axy} - уравнение, то есть неявная функция (график кривой «декартов лист »); - нечётная функция ;

F (P) = x 2 + y 2 + z 2 {\displaystyle f(P)={\sqrt {x^{2}+y^{2}+z^{2}}}} - функция точки, расстояние от точки до начала (декартовых) координат;

Y = 1 x − 3 {\displaystyle y={\frac {1}{x-3}}} - разрывная функция в точке x = 3 {\displaystyle x=3} ;

X = a [ t − sin ⁡ (t) ] ; y = a [ 1 − cos ⁡ (t) ] {\displaystyle x=a\,;\ y=a} - параметрически заданная функция (график циклоиды);

Y = ln ⁡ (x) , x = e y {\displaystyle y=\ln(x),\ x=e^{y}} - прямая и обратная функции;

F (x) = ∫ − ∞ x | f (t) | d t {\displaystyle f(x)=\int \limits _{-\infty }^{x}|f(t)|\,dt} - интегральное уравнение.

Образование - то, что остается после того, как забыто все, чему учили в школе.

Игорь Хмелинский, новосибирский учёный, ныне работающий в Португалии, доказывает, что без прямого запоминания текстов и формул развитие абстрактной памяти у детей затруднительно. Приведу выдержки из его статьи " Уроки образовательных реформ в Европе и странах бывшего СССР"

Заучивание наизусть и долговременная память

Незнание таблицы умножения имеет и более серьезные последствия, чем неспособность обнаружить ошибки в расчетах на калькуляторе. Наша долговременная память работает по принципу ассоциативной базы данных, то есть, одни элементы информации при запоминании оказываются связанными с другими на основе ассоциаций, установленных в момент знакомства с ними. Поэтому, чтобы в голове образовалась база знаний в какой-либо предметной области, например, в арифметике, нужно для начала выучить хоть что-то наизусть. Далее, вновь поступающая информация попадет из кратковременной памяти в долговременную, если в течение короткого промежутка времени (несколько дней) мы столкнемся с нею многократно, и, желательно, в разных обстоятельствах (что способствует созданию полезных ассоциаций). Однако при отсутствии в постоянной памяти знаний из арифметики, вновь поступающие элементы информации связываются с элементами, которые к арифметике никакого отношения не имеют – например, личностью преподавателя, погодой на улице и т.п. Очевидно, такое запоминание никакой реальной пользы учащемуся не принесет – поскольку ассоциации уводят из данной предметной области, то никаких знаний, относящихся к арифметике, учащийся вспомнить не сможет, кроме смутных идей о том, что он вроде бы что-то когда-то об этом должен был слышать. Для таких учащихся роль недостающих ассоциаций обычно выполняют разного рода подсказки – списать у коллеги, воспользоваться наводящими вопросами в самой контрольной, формулами из списка формул, которым пользоваться разрешено, и т.п. В реальной жизни, без подсказок, такой человек оказывается совершенно беспомощным и неспособным применить имеющиеся у него в голове знания.

Формирование математического аппарата, при котором формулы не заучиваются, происходит медленнее, нежели в противном случае. Почему? Во-первых, новые свойства, теоремы, взаимосвязи между математическими объектами почти всегда используют какие-то особенности ранее изученных формул и понятий. Концентрировать внимание ученика на новом материале будет сложнее, если эти особенности не смогут извлекаться из памяти за короткий промежуток времени. Во-вторых, незнание формул наизусть препятствует поиску решения содержательных задач с большим количеством мелких операций, в которых требуется не только провести определенные преобразования, но и выявить последовательность этих ходов, анализируя применение нескольких формул на два-три шага вперед.

Практика показывает, что интеллектуальное и математическое развитие ребенка, формирование его базы знаний и навыков, происходит значительно быстрее, если большая часть используемой информации (свойства и формулы) находиться в голове. И чем прочнее и дольше она там удерживается, тем лучше.

Основные виды (численных) формул

Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение . Такое суждение может утверждать что-то о переменных, а может - о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:

Уравнения

Уравнение - формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства . Однако, важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, является уравнением, где x - переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения : в данном случае таковыми являются два числа и −1 . Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл - для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y , z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Следует отметить, что подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x . В данном элементарном случае, речь может идти скорее об определении a через x: .

Тождества

Тождество - суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций , например тождество утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце , которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например .

Приближённые равенства

В 7-8 классе изучают решение уравнений графическим способом. В это время на решение даются простые уравнения("с хорошим корнем") которые легко отыскиваются с помощью графиков, особенно на клетчатой бумаге. Но существуют примеры где с корнем немного иначе. Рассмотрим два уравнения:√х=2-х и √х=4-х. Первое уравнение имеет единственный корень х=1, поскольку графики функций у =√х и у =2-хпересекаются в одной точке А(1,1). Во втором случае графики функций у =√х-фс у =4-х также пересекаются в одной точке А(1,1), но с "плохими" координатами. С помощью чертежа, делаем вывод, что абсцисса точки В примерно равна 2,5. В таких случаях говорят не о точном, а о приближённом решении уравнения и записывают так: х≈2,5.

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши - Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.

Используемые операции

В данном разделе будут перечислены операции, используемые в алгебре , а также некоторые общеупотребительные функции из математического анализа .

Сложение и вычитание

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очередность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

Функция одного действительного аргумента или однозначная функция;

Функция нескольких аргументов или многозначная функция (график одной из самых замечательных кривых - верзьера Аньези) ;

Не дифференцируемая функция в точке (непрерывная ломаная линия не имеет касательной) ;

- целочисленная функция;

- чётная функция ;

- нечётная функция ;

Функция точки, расстояние от точки до начала (декартовых) координат;

Разрывная функция в точке ;

Параметрически заданная функция (график циклоиды) ;

Прямая и обратная функции;

Интегральное уравнение;

Ссылки

  • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.

См. также

  • Алгебраическое выражение - математическое обозначение, не выражающее законченную мысль.

Wikimedia Foundation . 2010 .

  • Перволюди
  • Сцепление (механика)

Смотреть что такое "Математическая формула" в других словарях:

    Формула - (от лат. formula форма, правило, предписание): Математическая формула Формула в Microsoft Excel Химическая формула Эпическая формула Физическая формула Зубная формула Формула цветка Магическая формула Формула технических видов… … Википедия

    Формула произведения корангов - Формула произведения корангов математическая формула, выражающая коразмерность множества точек, в которых ядро производной отображения имеет заданную размерность, в виде произведения корангов данного отображения в прообразе и образе.… … Википедия

    Формула Грассмана - Формула Грассмана математическая формула, описывающая размерность подпространства конечномерного пространства. Выведена немецким ученым Г. Г. Грассманом. Формулировка: Если линейное пространство V конечномерно, то конечномерными… … Википедия

    Формула Гаусса-Остроградского - Формула Остроградского математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного… … Википедия

    МАТЕМАТИЧЕСКАЯ ЛОГИКА - одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия